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Abstract

In 2010, a new performance measure to evaluate the results obtained by
algorithms of data classification was presented, Confusion Entropy (CEN).
This render measure is able to achieve a greater discrimination than Accuracy
focusing on the distribution across different classes of both correctly and
wrongly classified instances, but it is not able to work correctly in cases of
binary classification. Recently, an enhancement has been proposed to correct
its behaviour in those cases, the Modified Confusion Entropy (MCEN).

In this work, we propose a new algorithm, MCENTree. This algorithm
uses MCEN as splitting criterion to build a decision tree model instead of
CEN, as proposed in the CENTree algorithm in the literature.

We make a comparison among a classic J48, CENTree and the new
algorithm MCENTree in terms of Accuracy, CEN and MCEN performance
measures, and we analyze how the undesired behaviour of CEN affects
the results of the algorithms and how MCEN shows a good behaviour in
terms of results: while MCENTree gives correct results in a statistical range
[0,1], CENTree sometimes gives non monotonous and out of range results
in binary class classification.
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Chapter 1

Introduction

1.1 Context

Data mining science let us extract knowledge from huge amount of data.
There are different steps along the data mining lifecycle that have been
covered to reach the extracted knowledge. These steps include Business/Re-
search Understanding Phase, Data Understanding Phase, Data Preparation
Phase, Modeling Phase, Evaluation Phase, and Deployment Phase[1]:

1. Business/Research Understanding Phase: In this phase the objectives
of the project are listed, translated to the definition of the data mining
problem and a strategy to fulfill these objectives is planned.

2. Data Understanding Phase: In this phase a preliminary analysis of
the data is done to familiarize with it and check its quality. Target
data can also be discerned in this phase.

3. Data Preparation Phase: The objective of this phase is to prepare the
raw data for the modeling algorithms. For this, some cases can be
selected and some variables can be selected or transformed. Inconsis-
tent raw data must be cleaned or transformed into an understandable
format for the modeling algorithm. Problems such as unbalanced data
or missing values must be faced too.

4. Modeling Phase: Sometimes different modeling techniques can be used
for the data, and each of those techniques have their own different
settings. The goal is find the model and set the configuration that
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optimizes the classification results. For this purpose it could also be
necessary to go back to the data preparation phase and check the
results obtained with different configurations of the data.

5. Evaluation Phase: An analysis of the results obtained with the different
models has to be done to check which one gets better results and if it
accomplishes the objectives of the project.

6. Deployment Phase: Make use of the created model in a real case
scenario, with real data. Write a report with the obtained results.

This work focuses on the evaluation phase, where an evaluation of
the performance of machine learning models is made. With that purpose,
different metrics are classically used, like Accuracy, Precision, Area Under
ROC Curve score, Matthews correlation coefficient (MCC )[2] , or more
recently, Confusion Entropy (CEN ), a metric based in Shannon’s Entropy
[3] proposed by Wei et al. [4] in 2010.

This new metric, published as a more discriminant metric than Accuracy,
not only has the percentage of well classified objects in consideration like
Accuracy does, but also considers the distribution of wrong classified objects
across the classes. Thus, CEN gives an overview on how classification have
been done in terms of number of elements in the main diagonal or outside
the main diagonal. In other words, when the main diagonal of the confusion
matrix contains the maximum number of possible elements it means that
there has been a good classification and therefore the entropy (or disorder)
is minimal. Conversely, when the maximum number of possible elements are
outside the main diagonal it means that there has been a bad classification
and therefore the entropy (or disorder) is maximum.

But CEN [5], presents an anomaly in the calculation of entropy for
binary classification. Since it is supposed to be a statistic in [0,1] range
it presents a non-monotonous behaviour with results greater than 1. An
improvement is given by [6][7] where this anomaly is corrected.

1.2 Motivation

Since many works have been based on CEN for different purposes and a new
definition of CEN have been given (known as MCEN )it is interesting to
review these works to check how the new definition affects. Thus, the goal
of this work is to compare the results obtained by the original version of
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CEN with the results obtained by the mentioned enhanced version, MCEN,
in a specific case of classification made with a decision tree algorithm
(according to [8]). Consequently, this work aims to help to determine the
true worthiness of the MCEN in the evaluation of performance of decision
trees classification algorithms.

For this purpose, different two-class datasets as those are the ones in
which the first version of CEN shows its wrong behaviour, are classified
through an unique version of the C4.5 algorithm, called CENTree, a decision
tree constructed based on the Confusion Entropy value.

Then, the results of these classifications are measured with both versions
of CEN and two classic measure, Overall Accuracy and Matthews Correlation
Coefficient.

1.3 Structure of the document

This document is structured as follows:

• Chapter 1: Introduction. A brief introduction of the work’s subject
matter and its context.

• Chapter 2: Related works on Confusion Entropy. An introduction to
the Confusion Entropy and a study of the related work done to date.

• Chapter 3: The proposed algorithm, MCENTree. In this chapter the
MCENTree algorithm is introduced.

• Chapter 4: Material and methods. A description of the data-sets and
methods used in the work.

• Chapter 5: Results. Exhibition of the results obtained with the used
methods.

• Chapter 6: Conclusions and future work. Summary of the results of
the work and new research work lines for the future.
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Chapter 2

Related works on Confusion
Entropy

In this chapter the work done up until now on the fields involved in this
work is studied. In section 2.1 Confusion Entropy and its uses on the
bibliography are explained (section 2.1.1). And in section 2.2 the new
version of Confusion Entropy (MCEN ) is described.

2.1 Confusion Entropy

Although being the most used and simpler metric of performance, Accuracy
has been widely questioned as the best way to measure results of multi-class
classification problems since long ago (Provost, F. J., Fawcett, T., Kohavi,
R., 1998 [9]) due to its incapacity to consider the misclassified items. For
various classifiers constructed by different methods, the results measured
by accuracy can be very similar or even the same, while the misclassified
samples could be differently classified. This implies a serious inconvenience
in cases where a discrimination between classes is needed.

With the purpose of creating a new metric able to discern the differences
between such cases, Confusion Entropy (CEN ) was introduced in 2010 by
Wei et al. [4].

This new metric does not only measure the percentage of well classified
items but also the distribution of wrong classified items in a confusion
matrix. This way, CEN gets better results in cases where wrong classified
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items have a higher concentration in between different classes than cases
where the wrong classified items have a more uniform distribution. These
results are shown in a range between 0 and 1, where 0 is the result of a
perfect classification.


10 1 1 1
1 10 1 1
1 1 10 1
1 1 1 10




10 3 0 0
0 10 3 0
0 0 10 3
3 0 0 10


(a) (b)

ACC= 0.7692 0.7692
CEN= 0.4196 0.2781

Table 2.1: Example of confusion matrices with same Accuracy but different CEN.
Confusion matrix (b) obtains a better CEN result for a higher concentration of the
misclassified items.

Baseline (a) (b)(
3 3
3 3

) (
2 3
3 4

) (
1 3
3 5

) (
0 3
3 6

) (
3 2
4 3

) (
3 1
5 3

) (
3 0
6 3

)
Entropy= 1.0000 0.9183 0.6500 0.0000 0.9183 0.6500 0.0000

ACC= 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Table 2.2: Examples for binary case with S = 12. (a): Entropy reduction within the
main diagonal, IN. (b) Entropy reduction outside the main diagonal, OUT. [7]

Furthermore, CEN is compared with Accuracy and other measures in [4],
evidencing a relative consistency between them: results with high Accuracy
tend to have low CEN. Also, authors of [10] show a relation between CEN
and MCC, and how they both have more desirable characteristics than
accuracy.

As described in the original publication [4], a multi-class classifier learned
from a training data-set, with N ≥ 2 classes labelled as {1, 2, . . . , N}, is
used to classify items of a test data-set, or in other words, predict the class
of these items with the data of their attributes. Since this work is focused in
supervised classification, classes of these test data-set entries are known and
a N ×N confusion matrix C = (Ci,j)i,j=1,...,N can be built, collecting the
results of the classification of the test data-set. Ci,j is the number of items
of class i wrongly classified as class j. S is the notation used to represent
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the sum of values of the confusion matrix, which corresponds to the total
number of entries in the test data-set, S =

∑N
i=1

∑N
j=1Ci,j.

The probability for an element of class i to be classified as class j
subjected to class j, P j

i,j, is shown as:

P j
i,j =

Ci,j∑N
k=1 (Cj,k + Ck,j)

, i, j = 1, ..., N, i 6= j (2.1)

Therefore, P j
i,j should be the relative frequency of cases, or cases of class

i classified as class j among all cases that are of class j or have been classified
as class j. But the results does not reflect that, as the well classified cases
of class j, Cj,j, are counted twice in the denominator [6][7].

In the same way, the probability for an elements of class i to be classified
as class j, subjected to class i, P i

i,j, is defined as:

P i
i,j =

Ci,j∑N
k=1 (Ci,k + Ck,i)

, i, j = 1, ..., N, i 6= j (2.2)

Thus, the value of CEN associated to class j is defined in the following
way:

CENj = −
N∑

k=1,k 6=j

(
P j
j,k log2(N−1)(P

j
j,k) + P j

k,j log2(N−1)(P
j
k,j)
)

(2.3)

Lastly, CEN associated to the confusion matrix is the combination of
the CEN associated to each class:

CEN =
N∑
j=1

Pj CENj (2.4)

Where the non-negative weights Pj, summing 1, are:

Pj =

∑N
k=1 (Cj,k + Ck,j)

2
∑N

k,`=1Ck,`

. (2.5)
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2.1.1 Applications

Since Confusion entropy was introduced, aside from the mentioned publica-
tions A unifying view for performance measures in multi-class prediction
[5], where its anomaly was revealed when the authors made a review of
the different performance measures in multi-class prediction, and Enhanc-
ing Confusion Entropy as Measure for Evaluating Classifiers [6], where the
improvement was published in 2018 for the first time, it has been used in
several cases of study.

Giuseppe Jurman, who previously revealed the error of CEN in 2010,
published [10] in 2012, where the correlation between CEN and MCC is
analyzed, showing a high correlation between them.

In 2013, CEN was used among other metrics to measure different
methods performance when classifying highly imbalanced ICU (Intensive
Care Unit) data [11].

It was also used that year as comparison for another novel measure,
probabilistic accuracy (Pacc), in [12].

In 2014, authors of [13] explained and considered using CEN to evaluate
their proposed novel classifier based on a combination of classic classification
methods, but ended up discarding it for its erratic behavior in binary
classification cases.

In 2015, in [14] authors used CEN as well as Accuracy and MCC to
evaluate classifications done with data concerning gait analysis with three
different assistive devices.

Two different articles where CEN is used where published in both
2017 and 2018. In 2017, in [15] Confusion entropy is used in the frame of
unsupervised machine learning, in the development of a new collaborative
clustering algorithm. It is used as stopping criterion, comparing different
clustering algorithms to check if the partitions they work with are identical.

Also, authors of [16] use CEN as metric to analyze the probability
sensitivity of Gaussian processes in bankruptcy prediction context.

In 2018, CEN was used among other metrics in [17] to analyze river water
quality prior to its use for drinking according the presence and abundance
of some benthic families and the relation with microbial pathogen standards
using decision tree models. Some CEN results presented in this article
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surpass, in fact, the theoretical upper limit of 1.

The authors of [18] used CEN to identify patients who are more likely
to be readmitted to an intensive care unit.

Both CEN and the enhanced version MCEN are currently available in
the Python library pycm, developed to work with confusion matrices of
multi-class problems [19].

2.2 Modified Confusion Entropy: MCEN

However, in the aforementioned A unifying view for performance measures
in multi-class prediction [5] (Jurman et al., 2010), while studying the
correlation between CEN and MCC, authors found that CEN cannot be
reliably used in cases of binary classification. In those cases, when there
are only two classes, CEN can surpass its theoretical maximum limit of 1.

In 2018, with the publication of Enhancing Confusion Entropy as Mea-
sure for Evaluating Classifiers[6], a new version of CEN was published.
This new version introduced a correction that solves this erratic behavior
in cases of binary classification.

In this publication, the formula to calculate the probability of classifying
elements of class i as elements of class j subjected to class j is replaced
with the following formula:

P̃ j
i,j =

Ci,j∑N
k=1 (Cj,k + Ck,j)− Cj,j

, i, j = 1, ..., N, i 6= j

This way the problem of counting twice the correctly classified cases in
the denominator is solved, reflecting in a correct way the relative frequency
of cases of class i classified as class j among all cases that are of class j or
that have been wrongly classified as class j.

The formula for (2.2) is modified in the same way:

P̃ i
i,j =

Ci,j∑N
k=1 (Ci,k + Ck,i)− Ci,i

, , i, j = 1, ..., N, i 6= j
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Making P̃ i
i,j a correct formula to represent the relative frequency of cases

of class i classified as class j among all cases that are of class i or that have
been wrongly classified as class i.

The formula for the weights in 2.5 is also modified:

P̃j =

∑N
k=1 (Cj,k + Ck,j)− Cj,j

2
∑N

k,`=1Ck,` − α
∑N

k=1Ck,k

where

α =

{
1/2 if N = 2

1 if N > 2 .

And the Confusion Entropy associated to class j (2.3) is redefined as
follows:

MCENj = −
N∑

k=1,k 6=j

(
P̃ j
j,k log2(N−1)(P̃

j
j,k) + P̃ j

k,j log2(N−1)(P̃
j
k,j)
)
,

Finally, a new formula for Confusion Entropy (2.4) is shown:

MCEN =
N∑
j=1

P̃j MCENj . (2.6)

In both measures CEN (2.4) and MCEN (2.6) classes can be separated,
making it easy to check the effect of modifications in the classifier that
affect single classes.

The differences in the values of CEN and MCEN can be seen in the
table bellow. This table shows some simple examples of symmetric and
balanced confusion matrices. The problematic characteristic of CEN is
reflected in the cases where its value surpass 1.
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(
6 0
0 6

) (
5 1
1 5

) (
4 2
2 4

) (
3 3
3 3

) (
2 4
4 2

) (
1 5
5 1

) (
0 6
6 0

)
CEN = 0.0000 0.5975 0.8617 1.0000 1.0566 1.0525 1.0000
MCEN = 0.0000 0.5910 0.8000 0.9057 0.9614 0.9891 1.0000

Table 2.3: Examples of CEN and MCEN values of some symmetric and balanced confusion
matrices.
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Chapter 3

The proposed algorithm:
MCENTree

In 2013, Han Jin et al. did not only use CEN for measuring the performance
of a classifier but also for constructing the classifier itself in Learning
decision trees using Confusion Entropy [8]. In that work, the authors
present the CENTree, a decision tree classifier based on the C4.5 algorithm
[20]. To construct decision tree algorithms, a splitting criterion must be
choosen to determine how the data is divided, from an initial impure node
representing the entire data-set to multiple and purer nodes, in a branches
and leaves(nodes) tree-like structure.

In the C4.5 algorithm, introduced for the very first time in [21], data is
repeatedly divided using Information Gain metric as criterion. This metric
measures the amount of information an attribute gives about the class,
calculating the amount of entropy that is reduced after dividing a node
with a certain attribute. The attribute with highest Information gain will
be used to divide a node.

In the case of the CENTree, however, Confusion entropy is used to
determine the best attribute to split a node. In this work, we propose
a modified version of this algorithm that relies in using the MCEN as a
criterion to iteratively select the most relevant features.

The recursive algorithm, as shown below, starts with the creation of the
initial node with the given samples.If all the samples belong to one class
the label of the node is set to that class; if, however, there are not more
attributes to check, the label is set to the most common class value of the
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remaining samples.

If the mentioned requirements are not fulfilled, the algorithm does not
end. The attribute from the given Attributes which best classifies Samples
is chosen, that is, the one that yields the minimum MCEN. For each
possible value for that attribute, a branch is added below the root node.
Corresponding to each of those values, a new set of Samples is formed.

For each of the new sets of Samples a sub-tree is added below the new
branch. This sub-tree will be formed by the next iteration of the algorithm,
with the samples of the corresponding set, and the remaining attributes
without the one that has been chosen in the current iteration.

As it is done in [8], a label corresponding to the most common class of
a set of samples is set to any sub-set of that set that could be empty due to
the lack of instances with a certain attribute value in that set of samples.

Algorithm 1 New Decision Tree with MCEN splitting based on [8]

1: MCENTree (Samples, Target attribute, Attributes, Majority Class):
2: Create a Root node.
3: if (Samples==empty) then
4: Return node with label = Majority Class
5: else if (all Samples are belonging to one class) then
6: return node whose label = classname
7: else if (Attributes == empty) then
8: Return node with label = Majority Class in Samples
9: else

10: A = best(Attribute) based on MCEN
11: for each possible value v(i) of A do
12: Add a new tree branch below Root where test(A=v(i))
13: Take subset Samples(v(i)) from Samples with value v(i) for A
14: Get majority class from Samples.
15: Add below this new branch the subtree:
16: MCENTree (Samples(v(i)), Target attribute, Attributes-A,
17: Majority class)
18: end for
19: end if
20: return Root
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Chapter 4

Materials and Methods

In this work the experiments made in CENTree have been reproduced to
the extent possible, focusing in the binary datasets used in the mentioned
article, the ones that are susceptible to have been wrongly classified by the
first version of CEN. In addition, classification made in four more datasets
has been studied. Datasets are available in UCI repository1. Selected
datasets are the following:

• Tic-tac-toe: Tic-tac-toe Endgame database, created and donated by
David W. Aha in 1991. This database contains all the end-game
possible configurations of the tic-tac-toe game, assuming that “x”
moves first and with “win” for “x” when “x” has achieve a “three-
in-a-row”, or “no-win” for “x” as possible classes. Therefore, the
data-set contains 958 instances, the number of possible end-game
boards, where each entry has nine attributes, corresponding to each
board square.
The class distribution is about 65% for “win” for “x” and 35% for
“no-win” for “x”.

• Breast-cancer: Breast cancer data, created by Matjaz Zwitter and
Milan Soklic of the Institute of Oncology of Ljubljana and donated
by Ming Tan and Jeff Schlimmer in 1988.
This data-set contains information of 286 patients as different in-
stances, and 9 attributes of both patient and their tumour information
plus the class attribute, “no-recurrence-events” with about a 70%
of the total number of instances and “recurrence-events” with the
remaining 30%.

1https://archive.ics.uci.edu/
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• Balloons: Balloon databases, collected by Michael Pazzani. In this
case a combination of the four different balloons data-set is used,
forming a unique data-set of 76 instances with four different attributes
of the balloons (color, size, act and age) and the class attribute
“inflated”, which can be true or false.

• Monks-2: The Monk’s Problems: Problem 2. Donated by Sebastian
Thrun of the School of Computer Science of Carnegie Mellon Univer-
sity.
The Monks problems were created to be resolved by any kind of
classifier, with the objective of being able to compare the different
classifiers to determine which one of them was better. There are three
different problems, but in this work only the second problem is used.

• Spect: SPECT heart data, created and donated by Krzysztof J. Cios
and Lukasz A. Kurgan of the University of Colorado in 2001.
This data-set collects heart data from Single Proton Emission Com-
puted Tomography (SPECT) images, and classifies the patients in
two different classes, “normal” or abnormal”.
Apart from the class attribute each one of the 267 instances is formed
with 22 more binary attributes with features processed from the
original SPECT images.

• Congressional voting: 1984 United States Congressional Voting Records
Database, data from the Congressional Quarterly Almanac donated
by Jeff Schlimmer in 1987.
This data set includes the votes of all of the 435 United States con-
gressmen (267 democrats, 168 republicans) in 16 different topics
(attributes). The class attribute corresponds to the political party to
each of the congressmen.

• Chess: Chess End-Game – King+Rook versus King+Pawn on a7.
Created by Alen Shapiro and donated by Rob Holte in 1987.
This data-set include 3196 instances, where each one of them is a
board-descriptions for the chess endgame situation. With the 36
attributes the board is described, while with the last attribute, the
class attribute, the possibility for the white pieces to win is collected
with a “win” or “no-win”” value. The class distribution of the data-set
is a 52% of the cases where white can win and 48% where it can not.

• Mushroom: Mushroom Database. Collected from the Mushroom
records drawn from The Audubon Society Field Guide to North
American Mushrooms (1981) and donated by Jeff Schlimmer in 1987.
This data-set includes data of 8124 samples of 22 different mushroom
species. The data includes 23 attributes for each instance to help
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to determine the class attribute, if the mushroom is “edible” or
“poisonous”.

In order to reproduce the C4.5 algorithm used as basis of the CENTree,
a python code created by Barış Can Esmer and found in his GitHub
repository 2 is used to create the model. Changing the splitting method of
the maximum information gain, used by the C4.5, for a function to calculate
and choose the minimum CEN, the code for constructing the model of the
CENTree is created.

With the CENTree model constructor codified, a classifier has been
programmed to classify test data. For this purpose, the data is splitted
into the same percentage as in [8], a 40% of the instances of each data set
is used as train data to construct the CENTree model, and the remaining
60% of the instances is used as test data to be classified through the model
and measure the effectiveness of the classifier.

However, different factors have made the aforementioned experiments
not reproducible, and therefore, the results obtained in this work do not
match exactly with the exposed in [8]. On the one hand the lack of the
original code of a non-fully described modified algorithm, and on the other
hand, the lack of information about the seed used in the experiments.

For these reasons the basic classical version of the C4.5 algorithm has
been implemented to construct the model, and each data-set has been
classified 100 times using 100 different seeds, from seed number 0 to number
99. The results shown in this work are the outcome of calculating the mean
of those 100 different results.

Furthermore, more experiments have been made adding noise to the
data-sets to study the behaviour of Confusion Entropy in more adverse
situations. The analyzed noise levels are of 10%, 20% and 40% and have
been applied with the unsupervised attribute filter ”AddNoise” of Weka.
With this filter, a percentage of the given attribute values can be randomly
changed. In this case only the class values of the mentioned percentages
have been altered, using the seed number 1.

To run all the algorithms required to complete this work a laptop with
an Intel Core I7-3517U of 1.90GHz has been used.

2https://github.com/barisesmer/C4.5
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Chapter 5

Results

5.1 Overall Results

As mentioned in previous sections, the core of this work has been the
replication of the CENTree algorithm but with MCEN instead of CEN for
the node splitting criterion. Although not being able to faithfully replicate
the original experiments due the lack of the originally used algorithm and
information about seeds used, in this work four of the datasets used in [8]
have been classified though a CENTree and a MCENTree, in addition to
another four different datasets. All the selected datasets are binary, the
class of the instances is limited to two different values, where the formula
of the Confusion entropy fails.

The results obtained in the first experiments can be seen in the table 5.1,
for each dataset, the results obtained with 3 different models are presented,
the classic J48, the reproduction of the CENTree, and the novel MCENTree.
For each of these three models, the results obtained with another three
different performance measures are shown, Accuracy, CEN and MCEN.
Thus, for a good comparison between models and performance measures,
the output of the CENTree has been measured with both CEN and MCEN,
so as the MCENTree. As a reminder, a higher value of accuracy represents
a better classification, while in the case of CEN and MCEN a better
classification results in a lower value.
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Data-set Model Accuracy CEN MCEN
J48 0.8120 0.6222 0.6091

Tic-tac-toe CENTree 0.8098 0.6256 0.6103
MCENTree 0.8190 0.6072 0.5948
J48 0.6454 0.8123 0.7650

Breast-Cancer CENTree 0.6247 0.7932 0.7482
MCENTree 0.6231 0.7877 0.7434
J48 0.6659 0.8108 0.7456

Balloons CENTree 0.6682 0.7993 0.7339
MCENTree 0.6666 0.7992 0.7333
J48 0.5961 0.8985 0.8311

Monks-2 CENTree 0.5849 0.8994 0.8337
MCENTree 0.5815 0.9023 0.8361
J48 0.7626 0.6482 0.6268

Spect CENTree 0.7695 0.6386 0.6198
MCENTree 0.7778 0.6279 0.6119
J48 0.9324 0.3182 0.3357

Vote CENTree 0.9285 0.3307 0.3476
MCENTree 0.9299 0.3281 0.3458
J48 0.9876 0.0877 0.1004

Chess CENTree 0.8055 0.6502 0.6335
MCENTree 0.7897 0.6792 0.6569
J48 0.9998 0.0019 0.0022

Mushroom CENTree 0.9971 0.0254 0.0301
MCENTree 0.9977 0.0198 0.0234

Table 5.1: Results for J48, CENTree and MCENTree algorithms.

In this table, slight differences between the three models can be seen.
On the one hand J48 achieves better results when being used to classify
Monks-2, Vote, Chess and Mushroom in the three analysed performance
measures, Accuracy, CEN and MCEN. On the other hand, MCENTree
yields better results for Tic-tac-toe and Spect for those same three measures,
and better results for CEN and MCEN in Breast-cancer, where J48 still
gets the best accuracy, and Balloons, where the best accuracy is given by
the CENTree.

Comparing CENTree with MCENTree, the first one gets better results
in the three measures in Monks-2 and Chess, while the second one does
the same in Tic-tac-toe, Spect, Vote and Mushroom, and obtains better
CEN and MCEN results in Breast-Cancer and Balloons, where Centree
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still manages to get a better accuracy.

Therefore, in the comparison between the CENTree and MCENTree,
the second one yields better results in most of the studied cases. If the
three models are compared, J48 and MCENTree get the best results in a
similar number of cases, J48 for Monks-2, Vote, Chess and Mushroom, and
MCETree for Tic-tac-toe, Breast-cancer, Balloons and Spect.

A closer look to the results can be taken with the table 5.2, which shows
the worst results obtained among the 100 times the classifier has been run.

In this table of worst results, and the ones in the same line for each
different noise levels, the five worst results of the CENTree have been
collected. For each of these values, corresponding to a classification made
with a specific seed, the values for the classification made with the same
seed but with the MCENTree are shown, plus the results of measuring the
confusion matrix given by the CENTree with MCEN.

5.2 Critical Cases

We have seen how MCENTree yields better results than CENTree, but
still have not seen how the formula of Confusion entropy fails and presents
values over the [0,1] range. To be able to see that undesired behaviour,
additional experiments have been done in this work. In these experiments,
with the addition of noise, the performance of the studied models is tested
in exceptional adverse situations. These experiments have been done with
noise levels of 10%, 20% and 40% of the total number of entries of the
datasets.

In table 5.3 the results of the classifications made with a level of 10%
of noise can be seen. As expected, with the addition of noise, obtained
accuracy, CEN and MCEN values are worse than those obtained with the
clean data. Also, it can be appreciated how the values of CEN tend to
increase more than the ones of the MCEN do, but still don’t surpass the
theoretical limit of 1.
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Dataset CENTree CENTree-MCEN MCENTree

Tic-tac-toe

0.7286
0.7142
0.7090
0.7041
0.7034

0.6972
0.6852
0.6783
0.6779
0.6745

0.6686
0.6298
0.6015
0.6317
0.6609

Breast-cancer

0.9412
0.9159
0.9055
0.8944
0.8894

0.8702
0.8531
0.8450
0.8319
0.8289

0.8728
0.8620
0.8365
0.8090
0.8213

Balloons

0.9513
0.9441
0.9411
0.9260
0.9260

0.8625
0.8622
0.8605
0.8397
0.8397

0.8431
0.8622
0.8605
0.8397
0.8397

Monks-2

0.9438
0.9425
0.9385
0.9363
0.9363

0.8584
0.8667
0.8643
0.8640
0.8663

0.8650
0.8681
0.8653
0.8726
0.8745

Spect

0.7281
0.7195
0.7107
0.7106
0.7087

0.6935
0.6844
0.6832
0.6848
0.6843

0.6215
0.6885
0.6566
0.6562
0.6421

Vote

0.4449
0.4404
0.4256
0.4253
0.4226

0.4441
0.4506
0.4391
0.4388
0.4319

0.3749
0.4257
0.3931
0.4503
0.3854

Chess

0.6923
0.6865
0.6854
0.6844
0.6842

0.6678
0.6640
0.6630
0.6616
0.6617

0.6765
0.6696
0.6894
0.6779
0.6664

Mushroom

0.0511
0.0498
0.0490
0.0467
0.0467

0.0599
0.0585
0.0574
0.0549
0.0549

0.0528
0.0142
0.0494
0.0505
0.0549

Table 5.2: 5 worst Confusion Entropy results out of 100 executions. Data without noise.
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Data-set Model Accuracy CEN MCEN
J48 0.6808 0.8276 0.7732

Tic-tac-toe CENTree 0.6840 0.8216 0.7655
MCENTree 0.6830 0.8214 0.7647
J48 0.5711 0.8974 0.8322

Breast-Cancer CENTree 0.5597 0.8617 0.8025
MCENTree 0.5596 0.8567 0.7985
J48 0.5653 0.8896 0.8049

Balloons CENTree 0.5666 0.8911 0.8070
MCENTree 0.5673 0.8917 0.8079
J48 0.5643 0.9312 0.8553

Monks-2 CENTree 0.5631 0.9231 0.8497
MCENTree 0.5591 0.9265 0.8525
J48 0.5956 0.9105 0.8335

Spect CENTree 0.6007 0.8947 0.8190
MCENTree 0.6013 0.8960 0.8203
J48 0.7918 0.6643 0.6427

Vote CENTree 0.8037 0.6366 0.6179
MCENTree 0.8039 0.6379 0.6196
J48 0.7975 0.6674 0.6482

Chess CENTree 0.6990 0.8185 0.7661
MCENTree 0.6919 0.8276 0.7731
J48 0.7984 0.6665 0.6477

Mushroom CENTree 0.8076 0.6471 0.6311
MCENTree 0.8073 0.6485 0.6326

Table 5.3: Results with a level of 10% of noise.

But as it has been said before, the results shown in these tables are
the mean of the results of the 100 executions of the algorithm. If we take
a closer look to the results, looking for the worst ones among all of them
(table 5.4), the anomalous behaviour of the CEN is reflected in the results
obtained for Balloons dataset.
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Dataset CENTree CENTree-MCEN MCENTree

Tic-tac-toe

0.8835
0.8739
0.8717
0.8694
0.8649

0.8147
0.8097
0.7989
0.8049
0.8011

0.8076
0.8097
0.7908
0.8101
0.7900

Breast-cancer

0.9578
0.9573
0.9555
0.9505
0.9498

0.8895
0.8780
0.8813
0.8773
0.8805

0.8651
0.8799
0.8758
0.8802
0.8536

Balloons

1.0229
1.0199
1.0075
0.9988
0.9976

0.9314
0.9228
0.9153
0.9046
0.9043

0.9314
0.9228
0.9153
0.9046
0.9043

Monks-2

0.9868
0.9731
0.9624
0.9613
0.9558

0.9009
0.8896
0.8819
0.8808
0.8764

0.9009
0.8905
0.8784
0.8708
0.8780

Spect

0.9903
0.9698
0.9671
0.9668
0.9627

0.8976
0.8828
0.8815
0.8797
0.8747

0.8019
0.8604
0.8815
0.8828
0.8564

Vote

0.7632
0.7474
0.7373
0.7281
0.7259

0.7239
0.6960
0.7041
0.6971
0.6916

0.7184
0.6906
0.6696
0.6727
0.6628

Chess

0.8525
0.8500
0.8480
0.8463
0.8456

0.7907
0.7911
0.7897
0.7882
0.7868

0.7852
0.7933
0.7811
0.7788
0.7908

Mushroom

0.6739
0.6714
0.6696
0.6693
0.6686

0.6538
0.6505
0.6494
0.6496
0.6496

0.6398
0.6459
0.6369
0.6457
0.6400

Table 5.4: 5 worst Confusion Entropy results out of 100 executions. Data with level of
10% of noise.
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Going further with the experiment, the results obtained with a level of
20% of noise are shown in table 5.5. In the same way as before, in this case
the results of accuracy, CEN and MCEN are worse than the ones obtained
with a level of noise of a 10%. We can see how the gap between the values of
CEN and MCEN increases as the noise level increases, but in these overall
results CEN still manages to cover its wrong behaviour.

Data-set Model Accuracy CEN MCEN
J48 0.5926 0.9227 0.8458

Tic-tac-toe CENTree 0.5918 0.9185 0.8382
MCENTree 0.5936 0.9159 0.8356
J48 0.5338 0.9380 0.8600

Breast-Cancer CENTree 0.5169 0.9193 0.8444
MCENTree 0.5159 0.9152 0.8414
J48 0.5228 0.9171 0.8260

Balloons CENTree 0.5219 0.9182 0.8274
MCENTree 0.5242 0.9181 0.8276
J48 0.5358 0.9595 0.8762

Monks-2 CENTree 0.5467 0.9457 0.8652
MCENTree 0.5445 0.9468 0.5467
J48 0.5581 0.9400 0.8551

Spect CENTree 0.5501 0.9387 0.8537
MCENTree 0.5500 0.9387 0.8533
J48 0.6656 0.8489 0.7880

Vote CENTree 0.6732 0.8347 0.7758
MCENTree 0.6708 0.8374 0.7777
J48 0.6665 0.8605 0.7988

Chess CENTree 0.6117 0.9148 0.8392
MCENTree 0.6095 0.9168 0.8406
J48 0.6665 0.8610 0.7993

Mushroom CENTree 0.6661 0.8581 0.7959
MCENTree 0.6685 0.8565 0.7951

Table 5.5: Results with a level of 20% of noise.

In this case, however, more results over the [0,1] range can be seen if we
analyze the worst results (table 5.6) obtained. Four of the results of the
classification made with the Spect dataset surpass the upper value of the
theoretical range, as well as one for Monks-2 dataset and, at least, the five
worst results of the classification done to the Balloons dataset surpass the
maximum value of the range.
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Dataset CENTree CENTree-MCEN MCENTree

Tic-tac-toe

0.9573
0.9548
0.9541
0.9538
0.9531

0.8736
0.8686
0.8702
0.8680
0.8684

0.8677
0.8609
0.8606
0.8528
0.8366

Breast-cancer

0.9958
0.9941
0.9874
0.9867
0.9862

0.9088
0.9147
0.9074
0.9035
0.8978

0.9129
0.8863
0.9066
0.9043
0.9017

Balloons

1.0577
1.0456
1.0402
1.0402
1.0369

0.9654
0.9472
0.9450
0.9450
0.9389

0.9654
0.9020
0.9450
0.9450
0.9389

Monks-2

1.0006
0.9869
0.9853
0.9850
0.9836

0.9076
0.8974
0.8972
0.8980
0.8966

0.9118
0.9083
0.8900
0.8991
0.8984

Spect

1.0172
1.0092
1.0020
1.0005
0.9993

0.9200
0.9149
0.9091
0.9067
0.9010

0.9164
0.9097
0.9139
0.8967
0.8856

Vote

0.9147
0.9123
0.8976
0.8966
0.8904

0.8407
0.8390
0.8242
0.8236
0.8194

0.8398
0.8239
0.8488
0.8107
0.8272

Chess

0.9411
0.9394
0.9338
0.9320
0.9317

0.8598
0.8585
0.8540
0.8530
0.8522

0.8598
0.8557
0.8538
0.8489
0.8576

Mushroom

0.8756
0.8715
0.8706
0.8701
0.8699

0.8097
0.8070
0.8055
0.8059
0.8046

0.8060
0.8037
0.8036
0.8045
0.8093

Table 5.6: 5 worst Confusion Entropy results out of 100 executions. Data with a level of
20% of noise.
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With a level of 40% of noise, all the cases measured with CEN are close
to a value of 1 (table 5.7), what would indicate a total misclassification,
while the values for MCEN are about a 0.1 lower than the ones of the CEN.
The values for accuracy are around 0.5, showing that only around a 50% of
the elements have been correctly classified.

Data-set Model Accuracy CEN MCEN
J48 0.5072 0.9905 0.8972

Tic-tac-toe CENTree 0.5033 0.9824 0.8869
MCENTree 0.5023 0.9802 0.8843
J48 0.4824 0.9901 0.8958

Breast-Cancer CENTree 0.4776 0.9818 0.8884
MCENTree 0.4801 0.9748 0.8821
J48 0.4555 0.9632 0.8672

Balloons CENTree 0.4579 0.9636 0.8679
MCENTree 0.4573 0.9659 0.8703
J48 0.4924 0.9934 0.8997

Monks-2 CENTree 0.5038 0.9834 0.8912
MCENTree 0.5050 0.9834 0.8913
J48 0.5014 0.9821 0.8885

Spect CENTree 0.5036 0.9758 0.8825
MCENTree 0.5001 0.9785 0.8847
J48 0.5150 0.9780 0.8860

Vote CENTree 0.5205 0.9698 0.8782
MCENTree 0.5168 0.9733 0.8813
J48 0.5218 0.9859 0.8942

Chess CENTree 0.5116 0.9898 0.8968
MCENTree 0.5125 0.9894 0.8965
J48 0.5194 0.9880 0.8960

Mushroom CENTree 0.5125 0.9866 0.8936
MCENTree 0.5123 0.9889 0.8960

Table 5.7: Results with a level of 40% of noise.

Under this extreme conditions, however, the atypical performance of
CEN is noticeable in all the studied datasets but one when looking the
individual results, what can be seen in table 5.8. For six out of the eight
datasets, at least the five worst results surpass the upper limit of the [0,1]
range, Tic-tac-toe, Breast-Cancer, Ballons, Monks-2, Spect and Vote. For
Chess dataset, only the worst four results surpass the limit. And finally,
Mushrooms dataset still manages to obtain results under the upper limit of
the range.
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Dataset CENTree CENTree-MCEN MCENTree

Tic-tac-toe

1.0123
1.0120
1.0096
1.0087
1.0080

0.9158
0.9145
0.9131
0.9122
0.9117

0.9231
0.9015
0.9160
0.9129
0.9211

Breast-cancer

1.0331
1.0297
1.0290
1.0273
1.0264

0.9341
0.9333
0.9319
0.9337
0.9310

0.9231
0.9285
0.9357
0.9138
0.9360

Balloons

1.0606
1.0486
1.0479
1.0402
1.0396

0.9708
0.9538
0.9498
0.9450
0.9470

0.9708
0.9193
0.9498
0.9450
0.9470

Monks-2

1.0179
1.0155
1.0136
1.0133
1.0129

0.9205
0.9191
0.9178
0.9188
0.9177

0.9206
0.9201
0.9108
0.9082
0.9161

Spect

1.0389
1.0308
1.0275
1.0243
1.0243

0.9414
0.9317
0.9288
0.9263
0.9263

0.9446
0.9192
0.9316
0.9215
0.9189

Vote

1.0158
1.0069
1.0024
1.0017
1.0001

0.9191
0.9104
0.9084
0.9067
0.9036

0.9207
0.9155
0.9084
0.9067
0.9074

Chess

1.0084
1.0075
1.0038
1.0018
0.9991

0.9124
0.9116
0.9085
0.9070
0.9042

0.9086
0.9084
0.9044
0.9046
0.9031

Mushroom

0.9988
0.9985
0.9968
0.9961
0.9948

0.9047
0.9042
0.9021
0.9020
0.9011

0.9084
0.9038
0.8996
0.9013
0.9006

Table 5.8: 5 worst Confusion Entropy results out of 100 executions. Data with a level of
40% of noise.
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In all tables of worst results that have been shown in this work, it can
be observed how all the individual cases where a classification made with
the CENTree algorithm that surpassed the theoretical range of values show
their values corrected when being classified using the same seed with the
MCENTree algorithm.

This can be easily seen in the following graphs, formed with the mean
vales of the worst results for each of the studied noise levels.

Next figures show results for both CENTree and MCENTree for each
database, with no noise and with the analyzed levels of 10%, 20% and 40%
of noise. It can be appreciated how CEN exceeds the value of ”1” when
noise is increased. For Tic-tac-toe, Breast-cancer, Monks-2, Vote and Chess
the limit is only surpassed when reaching a level of noise of 40%. Spect
dataset surpass the limit with a level of noise of 20%, and Balloons dataset
only needs a level of noise of 10% to show this behaviour. Lastly, studied
noise levels are not high enough to make the results of Mushrooms dataset
surpass the limit of ”1”.

Figure 5.1: Graph with mean values of the worst results obtained for Tic-tac-toe dataset.
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Figure 5.2: Graph with mean values of the worst results obtained for Breast-cancer
dataset.

Figure 5.3: Graph with mean values of the worst results obtained for Balloons dataset.
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Figure 5.4: Graph with mean values of the worst results obtained for Monks-2 dataset.

Figure 5.5: Graph with mean values of the worst results obtained for Spect dataset.
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Figure 5.6: Graph with mean values of the worst results obtained for Vote dataset.

Figure 5.7: Graph with mean values of the worst results obtained for Chess dataset.
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Figure 5.8: Graph with mean values of the worst results obtained for Mushrooms dataset.
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this work experiments regarding the CEN based decision tree algorithm,
CENTree, have been conducted. In order to do this, first, the algorithm has
been replicated to the extent possible, and a classifier has been constructed.
The data-sets selected to be classified have been four different binary data-
sets used in [8] plus another four binary data-sets, all of them from the
same UCI repository mentioned before. To test the effectiveness of the
classification algorithm the datasets have been modified with different levels
of noise to reproduce adverse situations.

For the reproduction of the algorithm, the C4.5 algorithm has been
used as base, while the node splitting method has been changed from the
classical information gain based criterion to a CEN based pruning criterion
(the CENsplit method). The lack of the original code used in [8] has been
the first issue in this work, as the configuration of the algorithm used
is unknown and techniques like the so called Minimun-CEN-Pruning, a
method to prevent overfitting, are not explained in detail.

On the other hand, the lack of information about the seeds used in the
original work has represented the second problem to replicate the results of
the experiments. To handle this issue trying to avoid biased results, 100
seeds, from number 0 to 99, have been used to obtain 100 different outcomes
from the data classification. The results presented in this work are the
mean of the different results.
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Despite the mentioned difficulties a reliable CENTree has been con-
structed, and the MCENTree, replacing the old definition of CEN with
the new one, MCEN. While in the beginning the results of the classifica-
tions made through both CENTree and MCENTree may seem similar, the
differences become more and more noticeable as higher levels of noise are
introduced in the datasets, overloading the resulting confusion matrices
outside the main diagonal, to the point where the CENTree exposes its
malfunctioning with results over the [0,1] range.

Therefore, with the obtained results, it can be concluded that the
substitution of CEN by MCEN yields better results in this particular case
of classification made with a decision tree based on Confusion Entropy.

6.2 Future work

In this work another research has been replicated to make an enhancement
concerning to the Confusion Entropy definition and compare the obtained
results with the originals. However, the difficulties to replicate the original
experiments have made it impossible to get the same results as the ones
obtained in the original work. A possible future goal would be to recreate
the experiments under the original circumstances, in case of being able to
obtain the original algorithm and know the seeds used. In spite of this, the
conclusions of the comparison would not presumably be different.

In the same line, as future research goals, more works from the literature
in which the concept of Confusion Entropy has been used can be replicated.
Thus, CEN will be replaced with MCEN to make comparisons in the results
between these and other performance measures like Accuracy or Matthews
Correlation Coefficient (MCC).

In this way, the improvement presented by MCEN with respect to CEN
could be concluded by empirical experimentation.

Taking a step further, looking for new original applications where MCEN
could be useful can always be considered.
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