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Abstract:  We present ClassifyMe a software tool for the automated identification of animal 

species from camera trap images. ClassifyMe is intended to be used by ecologists both in the 

field and in the office. Users can download a pre-trained model specific to their location of 

interest and then upload the images from a camera trap to a laptop or workstation. ClassifyMe 

will identify animals and other objects (e.g. vehicles) in images, provide a report file with the 

most likely species detections and automatically sort the images into sub-folders corresponding 

to these species categories. False Triggers (no visible object present) will also be filtered and 

sorted. Importantly, the ClassifyMe software operates on the user’s local machine (own laptop 

or workstation) not via internet connection. This allows users access to state-of-the-art camera 

trap computer vision software in situ, rather than only in the office. The software also incurs 

minimal cost on the end-user as there is no need for expensive data uploads to cloud services. 

Furthermore, processing the images locally on the users’ end-device allows them data control 

and resolves privacy issues surrounding transfer and third-party access to users’ datasets.  

 
Key-words: Camera Traps, Camera Trap Data Management, Deep Learning, Ecological Software, 

Species Recognition, Wildlife Monitoring 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/646737doi: bioRxiv preprint first posted online May. 24, 2019; 

http://dx.doi.org/10.1101/646737
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Passive Infrared sensor activated cameras, otherwise known as camera traps, have proved to 

be a tool of major interest and benefit to wildlife management practitioners and ecological 

researchers (Meek et al. 2014a;b). Camera traps are used for a diverse array of purposes 

including presence-absence studies (Khorozyan, Malkhasyan & Abramov 2008; Gormley et 

al. 2011; Ramsey, Caley & Robley 2015), population estimates (Karanth 1995; Trolle & Kéry 

2003; Jackson et al. 2006; Gowen and Vernes 2014), animal behaviour studies (Vernes, Smith 

& Jarman 2014; Vernes & Jarman 2014; Vernes et al. 2015); and species interactions studies 

(Harmsen et al. 2009; Linkie & Ridout 2011; Meek, Zewe & Falzon 2012). A comprehensive 

discussion of applications of camera trap methodologies and applications are described in 

sources including O’Connell et al. (2011); Meek et al. (2014a); Rovero and Zimmerman 

(2016). The capacity of camera traps to collect large amounts of visual data provides 

unprecedented opportunity for remote wildlife observation, however these same datasets incur 

a large cost and burden as image processing can be time consuming (Meek et al. 2014b; Tack 

et al. 2016). The user is often required to inspect, identify and label tens-of-thousands of images 

per deployment; dependent on the number of camera traps deployed. Large scale spatio-

temporal studies may involve 10-100s of cameras deployed consecutively over months to years 

and the  image review requirements are formidable and resource intensive. Numerous software 

packages have been developed over the last 20 years to help with analysing camera trap image 

data (see Young, Rode-Margono & Amin 2018) but these methods often require some form of 

manual image processing. Automation in image processing has been recognised internationally 

as a requirement for progress in wildlife monitoring ( Meek et al. 2014 a;b) and this has become 

increasingly urgent as camera trap deployment has grown over time.   

Camera trap image interrogation can be tackled in different ways including; a) 

processing images by paid staff, b) use of the crowd-sourcing internet marketplace, c) 

recruiting volunteers such as citizen science programs or d) limiting the design of studies to 

ensure that data issues are manageable. Using staff requires access to sufficient budget and 

capable personnel and represents an expensive use of valuable resources in terms of both time 

and money. The quality of species identification is likely to be high but the time of qualified 

staff is otherwise lost for other tasks such as field work and data interpretation. Using the 

crowd-sourced internet market involves payment to commercial providers to out-source this 

task. A prominent example of such services is the Amazon Mechanical Turk ( 

https://www.mturk.com ) whereby practitioners can submit their data to the service for 

processing for a fee. Tasks like species identification, also known as Human Intelligence Tasks 
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(HIT’s),  are widely used in commercial settings for the annotation of images. However, there 

are inherent biases between individuals with different expertise and aspirations often resulting 

in errors. 

Crowd-sourcing involves the use of volunteers to provide image annotation services.  

Costs are comparatively low to that of employing staff but there a number of important 

limitations and considerations when designing machine learning algorithms in the presence of 

uncertainty in label veracity (Zhang, Wu & Sheng 2016). Species identification results could 

be poor as it might require specialised knowledge of the field. The suitability of this approach 

for sensitive ecological datasets (e.g. involving threatened or endangered species) is also an 

important consideration as is privacy laws and constraints (Meek and Butler 2014). There is 

also limited control and knowledge of where the data is transmitted and who accessed the data 

along with their locations and the storage of data records by service providers. Moreover, the 

potentially high cost of image data transfer over internet connections and issues around 

minimum wage and other ethical critiques of such services are controversial.  

The use of volunteers or citizen scientists has proved effective in the field of camera 

trapping, notably via TEAM Network (Ahumada et al 2011) and the Snapshot Serengeti project 

(Swanson et al. 2015). In the context of camera trap image review, citizen science involves the 

review of camera trap imagery via a website. Images are randomly displayed along with species 

identification libraries and a visual identification guidebook. This approach is reportedly 

effective (Swanson et al. 2015) with iconic species but for some taxa human identification has 

been shown to be problematic (Meek, Vernes & Falzon 2013). Other challenges with the citizen 

science approach include access to the necessary software infrastructure (although services 

such as Zooinverse https://www.zooniverse.org now exist) along with privacy laws and related 

issues. Meek and Zimmerman (2016) discuss the challenges of using citizen science for camera 

trap research  and managing such teams along with the data can incur enormous costs to the 

researchers. Furthermore, the researcher has limited control over the time taken to complete 

the review of the camera trap image datasets because it relies on the goodwill of the volunteers.  

Limiting the design of studies to minimise analysis time by reducing the number of 

camera traps deployed, reviewing data for the presence of select species only or evaluating 

only a proportion of the available data and archiving the remainder is an unpalatable option. 

This approach does not fulfil the tests of scientific rigour (Claridge and Paull 2014; Swann & 

Perkins 2014) and constrains the value of such research findings for improving biodiversity 

management outcomes. 
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To overcome the limitations of approaches outlined above, including human error and 

operator fatigue, we have utilised computer science to develop automated labelling. As well as 

being able to validate results, key strengths of this approach, compared to existing options, 

include it being  consistent, comparatively fast, standardised, and relatively free from biases 

associated with anthropomorphic values and operator fatigue. Advances in computer vision 

have been pronounced of recent years with successful demonstrations of image recognition in 

fields as diverse as autonomous cars, citrus tree detection from drone imagery and 

identification of skin cancer (Zhang et al. 2018; Csillik et al. 2018; Esteva et al. 2017). Recent 

work has also demonstrated the feasibility of Deep Learning approaches for species 

identification in camera trap images (Norouzzadeh et al. 2018) although it is worth noting that 

such algorithms have been used in prototype software for this purpose since at least 2015 in 

projects such as Wild Dog Alert (https://invasives.com.au/research/wild-dog-alert/ ) (Meek et 

al. in press) building on earlier semi-automated species recognition algorithms (Falzon, Meek 

& Vernes 2014). The practical benefit of this research for end-users has been limited because 

they cannot access software to automatically process camera trap images. 

We therefore developed ClassifyMe as a software tool to reduce time and costs of image 

processing. The ClassifyMe software is designed to be used in the field on a laptop. This is a 

challenging requirement for a software application because it is required to operate across 

diverse computer hardware and software configurations while providing the end-user with a 

high-level of control and independence of their data. To elaborate on how we tackle these issues 

we outline the general structure and operation of ClassifyMe and provide an evaluation of its 

performance using an Australian species case study. 

 

Software Design 

Workflow 

The software is developed so it can be installed on individual computers under an End User 

Licence Agreement (EULA). The intent is that the user will upload an SD card of camera trap 

images, select the relevant model and then run ClassifyMe on this dataset to automatically 

identify and sort the images (Fig 1).  
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Figure 1. The data collection-analysis pipeline using the ClassifyMe software. 

 

Processing camera trap images on a user’s own machine provides a high level of control 

on the use and access to the data. There are ongoing concerns around the sharing, privacy and 

security of using a cloud service or similar. Furthermore, ClassifyMe avoids the need for the 

user to upload their data to a cloud service which can be prohibitive in terms of accessibility, 

time and cost. ClassifyMe adopts a ‘tethered’ service approach whereby the user needs only 

intermittent internet access (every 3 months) to verify security credentials to ensure continued 

access to the software. The ‘tethered’ service approach was adopted as a security mechanism 

to obstruct misuse and unauthorised proliferation of the software for circumstances such as 

poaching. A practitioner can therefore validate security credentials and download the 

appropriate regional identification model (e.g. New England model) prior to travel into the 

field. When in the field, ClassifyMe can be used to evaluate deployment success (e.g. after 

several weeks of camera trap data collection) and can be used in countries with limited or no 

internet connectivity. Validation services are available for approved users (e.g. ecology 

researchers or managers) who require extensions of tethered renewal period.  

 

Software Design Attributes 

The software design and stability of ClassifyMe was complicated by our choice to operate 

solely on the user’s computer. As such the software is capable of operating on a plethora of 

different operating systems and hardware designs. To limit stability issues ClassifyMe is 

designed to work with Windows 10TM as this operating system is widely used by field 

ecologists. Different hardware options are supported including CPU-only and GPU, the models 

used by ClassifyMe are best supported by NDVIDIA GPU hardware and as a result, users with 

this hardware will experience substantially faster processing times (up to 20 times faster per 

dataset).  
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The ‘tethered’ approach and corresponding application for software registration might 

be viewed as an inconvenience by some users. However, these components are essential 

security aspects of the software. The ClassifyMe software is a decentralised system; individual 

users access a web site, download the software and the model and then process their own data. 

The ClassifyMe web service doesn’t see the user’s end data and without the registration and 

‘tethering’ process the software could be copied and redistributed in an unrestricted manner. 

When designing ClassifyMe, the authors were in favour of free, unrestricted software which 

could be widely redistributed. During the course of development, it occurred to the team the 

software was also at risk of misuse. In particular,  ClassifyMe could be used to rapidly scan 

camera trap images whilst in field to detect the presence of particular species such as African 

elephants which are threatened by poaching (Bennett 2015). To address this concern a host of 

security features were incorporated into ClassifyMe. These features range from legal provisions 

on the software licence, through to a user validation and certification process and extensive 

undisclosed software security features. Disclosed security features include tethering and 

randomly generated licence keys and facilities to ensure that ClassifyMe is used only on the 

registered hardware and unauthorised copying is prevented. In the event of a breach attempt, a 

remote shutdown of the software is initiated.  

All recognition models are restricted, and approval is issued to users on a case-by-case 

basis. This security approach is implemented in a privacy-preserving context. The majority of 

security measures involve hidden internal logic along with security provisions of the 

communications with the corresponding ClassifyMe web service https://classifymeapp.com/ 

(to ensure security of communications with the end user and their data). Information provided 

by the user and the corresponding hardware ‘fingerprinting’ identification is performed only 

with user consent and all information is stored on secured encrypted databases.  

A potential disadvantage of the local processing approach adopted by ClassifyMe is 

that user’s software resources are utilised, which potentially limits the scale and rate of data 

processing. An institutional cloud service for instance can auto-scale (once the data is 

uploaded) to accommodate data sets from hundreds of camera trap SD card simultaneously.  In 

contrast, the ClassifyMe user will only be able to only process one camera trap dataset at a 

time. The ClassifyMe user will also have to implement their own data record management 

system, there is no database system integrated within ClassifyMe which has the benefit of 

reducing software management complexity for end users but the disadvantage of not providing 

a management solution for large volumes of camera trap records. ClassifyMe is designed 
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simply to review camera trap data for species identification, auto-sort of images and export of 

the classifications (indexed to image) to a csv file.  

 

Graphical User Interface  

When ClassifyMe is initiated the main components  consist of: a)  an image banner 

which displays thumbnails of the camera trap image dataset, b) a model selection box (in this 

example set as ‘New England NSW’), c) the dialogue box providing user feedback (e.g. ‘Model 

New England NSW loaded’) along with a series of buttons (‘Load’, ‘Classify’, ‘Cancel’, 

‘Clear’, ‘Models’) to provide the main mechanisms of user control (Fig 2).  

 

 
 
Figure 2: The ClassifyMe main user interface. 

 

The image banner provides a useful way for the user to visually scan the contents of 

the image data set to confirm that the correct data set is loaded. The ‘Models’ selection box 

allows users to select the most appropriate detection model for their data set. ClassifyMe offers 

facilities for multiple models to be developed and offered through the web service. A user 

might for instance operate camera trap surveys across multiple regions (e.g. New England 

NSW and SW USA). Selection of a specific model allows the user to adapt the model to the 

specific fauna of a region. Access to specific models is dependent on user approval by the 
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ClassifyMe service providers. Facilities exist for developing as many classification models as 

required but dependent on the provision of model training datasets. 

The dialogue box of ClassifyMe provides the primary mechanism of user feedback with 

the software. It provides textual responses and prompts which guide the user through use of 

the software and the classification process. Finally, the GUI buttons provide the main 

mechanism of user control. The ‘Load’ button is used to load an image dataset from the user’s 

files into the system; the ‘Classify’ button to start the classification of the loaded image data 

using the selected model; the ‘Cancel’ button to halt the current classification task and the 

‘Clear’ button to remove all current text messages from the dialogue box.  

When an image dataset is loaded and the classification process started (Fig 3), each 

image is scanned sequentially for the presence of an animal (or other category of interest) using 

the selected model. ClassifyMe automatically sorts the images into sub-directories 

corresponding to the most likely classification and can also automatically detect and sort 

images where no animal or target category is found. The results are displayed on-screen via 

the dialogue box which reports the classification for each image as it is processed. The full set 

of classification results, which includes the confidence scores for the most likely categories, is 

stored as a separate csv file. ClassifyMe creates a separate sub-directory for each new session. 

The full UML structure of ClassifyMe (omitting security features) is described in Appendix 

A1. 

 
 
Figure 3: ClassifyMe UML diagram for image classification.  
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Recognition Models 

The primary machine learning framework behind ClassifyMe is DarkNet and YOLOv2 

(Redmon & Farhadi 2017). The YOLOv2 framework is an object detector deep network based 

on a Darknet-19 convolutional neural network structure. YOLOv2 provides access to not only 

a classifier (e.g. species recognition) but also a localiser (where in image) and a counter (how 

many animals) which facilities multi-species detections. ClassifyMe at present is focused on 

species classification but future models could incorporate these additional capabilities due to 

the choice of YOLOv2. YOLOv2 is designed for high-throughput processing (40-90 frames 

per second) whilst achieving relatively high-accuracy (YOLOv2 544 x 544 mean Average 

Precision 78.6@49 frames per second on Pascal VOC 2007 dataset using a GeForce GTX Titan 

X GPU,  Redmon & Farhadi 2017). A range of other competitive object detectors such as SSD 

(Liu et al. 2016) , Faster R-CNN (Ren et al. 2017) and R-FCN (Dai et al. 2016) could also have 

been selected for this task. Framework choice was governed by a range of factors including: 

accuracy of detection and classification; processing speed on general purpose hardware; model 

development and training requirements; ease of integration into other software packages and 

licencing. Dedicated object classifiers such as ResNet (He et al. 2016a) also provide high-

accuracy performance on camera trap data (Villa, Salazar & Vargas 2017), however such 

models lack the future design flexibility of an object detector.  

ClassifyMe is designed for the end-user to install relevant models from a library 

accessed via the configuration panel. The model is then made available for use in the model 

drop-down selector box e.g. the user might install the Australian and New Zealand models via 

the configuration panel and when analysing a specific data set select the New Zealand model. 

These models are developed by the ClassifyMe development team. Models are developed in 

consultation with potential end-users and when the image data provided meets the ClassifyMe 

data requirements standard (Refer Appendix A2). Importantly, ClassifyMe recognition models 

perform best when developed for the specific environment, camera trap imaging configuration 

and species cohort to be encountered in each study. When used outside the scope of the model, 

detection performance and accuracy might degrade. ClassifyMe is designed primarily to 

support end-users who have put effort into ensuring high-quality annotated datasets and who 

value the use of automated recognition software within their long-term study sites.  
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Evaluation 

ClassifyMe has currently been developed and evaluated for five recognition models. These are 

Australia (New England New South Wales), New Zealand, Serengeti (Tanzania), North 

America (Wisconsin) and South Western USA models. The Australia (New England NSW) 

dataset was developed from data collected at the University of New England’s Newholme Field 

Laboratory, Armidale NSW. The New Zealand model was developed as part of a predator 

monitoring program in the context of the Kiwi Rescue project (Falzon & Glen 2018). The 

Serengeti model was produced from a subset of the Snapshot Serengeti dataset (Swanson et al. 

2015).  The North America (Wisconsin) model was developed using the Snapshot Wisconsin 

dataset (Willi et al. 2018) whilst the South West USA was developed using data provided by 

Caltech camera traps data collection (Beery, Van Horn & Perona 2018). Source datasets were 

sub-set according to minimum data requirements for each category (comparable to the data 

standard advised in A2) and in light of current project developer resources.  

Object detection models were developed for each dataset using YOLOv2. Hold-out test 

data sets were used to evaluate the performance of each model on data not used for model 

development. A range of model evaluation metrics were recorded including accuracy, true 

positive rate, positive predictive value, Matthew’s Correlation Coefficient and AUNU (Area 

Under the Receiver Operating Characteristic Curve of each class against the rest, using the 

uniform distribution) (Ferri, Hernández-Orallo & Modroiu 2009). 

Overall recognition accuracies were (98.6% natural illumination, 98.7% infrared 

illumination) for Australia (New England, NSW), (97.9% natural and infrared illumination) 

for New Zealand, (99.0% natural and flash illumination) for Serengeti, (95.9% natural 

illumination, 98.0% infrared illumination) for North America (Wisconsin) and  (96.8% natural 

illumination, 98.5% infrared illumination) for  South West USA models. In this section, we 

will focus on the Australia (New England, NSW) model, further results of the other models are 

provided in Appendix A3.  

The Australian (New England, NSW) consisted of 9 recognition classes and a total of 

8,900 daylight illumination images and 8,900 infrared illumination images. Specific details of 

the Australian (New England, NSW) data set are provided in Table 1. 
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Category Natural Sample Size 
(Training){Validation}[Test] 

IR Sample Size 
(Training){Validation}[Test] 

Cat (800){100}[100] (800){100}[100] 
Dog (800){100}[100] (800){100}[100] 
Fox (800){100}[100] (800){100}[100] 

Human (800){100}[100] (800){100}[100] 
Macropod (800){100}[100] (800){100}[100] 

Sheep (800){100}[100] (800){100}[100] 
Vehicle (800){100}[100] (800){100}[100] 
Other (800){100}[100] (800){100}[100] 
NIL (800){0}[100] (800){0}[100] 

 
Table 1: Composition of New England, New South Wales, Australia data set. 

 

Model training was performed on a Dell XPS 8930 Intel Core i7-8700 CPU @ 3.20GHz 
NVIDIA GeForce GTX 1060 6GB GPU 16GB RAM 1.8TB HDD drive running a Windows 
10 Professional x64 operating system using YOLOv2, via the “AlexeyAB” Windows port 
(https://github.com/AlexeyAB/darknet). Training consisted of 9187 epochs, 16000 iterations 
and 23 hours for the natural illumination model and 9820 epochs, 17000 iterations and 25 hours 
for the infrared illumination model.  
 

Class Average Precision 

Cat 99.65% 

Dog 90.91% 

Fox 90.91% 

Human 90.91% 

Macropod 80.87% 

Sheep 86.46% 

Vehicle 100.00% 

Other 77.14% 

 
Table 2: Detection Summary results: New England NSW model (daylight). Randomly selected model 
training dataset with 800 images per class. Using threshold (Th = 0.24) to achieve a mean average precision 
(mAP) = 0.896067 (89.61%), 2967 detections, 993 unique truth count, and average Intersection of Union 
(IoU) = 75.04% and 902 True positives, 69 False Positives and 91 False Negatives. Total detection time was 
20 seconds. 
 

Model performance was assessed on an independent randomly held-out test data set;  
the detection summary (Table 2), the confusion matrix of the specific category performance 
(Table 3), and the model performance metrics were evaluated (Table 4) using PyCM (Haghighi 
et al. 2018). Figure 4 displays examples of detection outputs, including the rectangle detection 
box that is overlaid on the location of the animal in the image and the detected category.  
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P

re
d

ic
te

d
 

Actual 
 Cat Dog Fox Human Macropod NIL Other Sheep Vehicle Precision 

Cat 100 0 0 0 0 0 0 0 0 1.00 
Dog 0 100 0 0 0 0 0 0 0 1.00 
Fox 0 0 99 0 0 0 3 0 0 0.97 

Human 0 0 0 100 0 0 0 0 0 1.00 
Macropod 0 0 1 0 97 0 1 0 0 0.98 

NIL 0 0 0 0 2 100 8 0 0 0.91 
Other 0 0 0 0 0 0 91 0 0 1.00 
Sheep 0 0 0 0 1 0 0 100 0 0.99 

Vehicle 0 0 0 0 0 0 0 0 100 1.00 
Recall 1.00 1.00 0.99 1.00 0.97 1.00 0.91 1.00 1.00 Overall 

Model 
Accuracy: 

0.99 
 

Table 3: Confusion Matrix: New England NSW (natural illumination) model as assessed on a randomly 

selected hold-out test dataset.  

 

 

 

 

 

Metric Magnitude 
Overall Accuracy  0.98556  
Overall Accuracy Standard Error 0.00398 
95% Confidence Interval [0.97776,0.99335] 
Error Rate  0.01444 
Matthews Correlation Coefficient 0.98388 
True Positive Rate (Macro) 0.98556 
True Positive Rate (Micro) 0.98556 
Positive Predictive Value (Macro) 0.98655 
Positive Predictive Value (Micro) 0.98556 
AUNP 0.99187 

 
Table 4: Key Test Metrics of the New England, NSW (natural illumination) test data set. Note: * AUNU 

denotes Area Under Receiver Operating Characteristic Curve each class against rest using a uniform 

distribution. 
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Figure 3: Detection Image examples from the New England dataset. (a) Macropod (Kangaroo), (b) Cat, (c) 

Dingo (dog) and (d) Fox.  

 

The results of our testing indicate that ClassifyMe provides a high level of performance which 

is accessible across a wide range of end-user hardware with minimal configuration 

requirements.  

 

 

Discussion: 

ClassifyMe is the first app of its kind,  it provides a software tool which allows field 

ecologists and wildlife managers access to the latest advances in artificial intelligence. 

Practitioners can utilise ClassifyMe to automatically identify, filter and sort camera trap image 

collections according to categories of interest. Such a tool fills a major gap in the operational 

requirements of all camera trap users irrespective of their deployments.  

There are additional major benefits to localised processing on the end-user’s device. 

Most importantly, the local processing offered by ClassifyMe provides a high degree of privacy 

protection of end-user data. By design ClassifyMe does not transfer classification information 

of user image data back to third party, rather, all processing of the object recognition module 
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is performed locally, with minimal user information transferred back, via encryption, to the 

web service. The information transferred to the web service concerns the initial registration 

and installation process and the on-going verification services aimed at disrupting un-

authorised distribution (which is targeted specifically at poachers and similar mis-uses of 

ClassifyMe software). These privacy and data control features are known to be appealing to 

many in our wider network of ecological practitioners, because transmitting and sharing images 

with third parties compromises (1) human privacy when images contain people, (2) the location 

of sensitive field equipment, and (3) the location of rare and endangered species that might be 

targeted by illegal traffickers. Researchers and wildlife management groups also often want 

control over the end-use of their data and sometimes have concerns about the unforeseen 

consequences of unrestricted data sharing.  

At present, there are few alternatives to ClassifyMe for the wildlife manager wanting to 

implement artificial intelligence technologies for the automated revision of their camera trap 

images. The most relevant alternative is the MLWIC: Machine Learning for Wildlife Image 

Classification in R package (Tabak et al. 2018). The MLWIC package provides the option to 

run pre-trained models and also for the user to develop their own recognition models suited to 

their own data sets. Whilst of benefit to a subset of research ecologists skilled with R, the 

approach proposed by Tabak et al. (2018)  is not accessible to a wider audience as it requires 

investment of considerable time and effort in mastering the intricacies of the R Development 

Language and Environment along with the additional challenges of hardware and software 

configuration which are associated with this software. Integration of the MLWIC package 

within R is sensible if the user wants to incorporate automated image classification within their 

own workflows. However such automated image recognition services are already offered in 

other leading machine learning frameworks particularly TensorFlow (Abadi et al. 2016) and 

PyTorch (Paszke et al. 2017). Such frameworks offer extensive capabilities with much more 

memory efficient processing for a similar investment in software programming know-how 

(Python) and hardware configuration. In fact our wider research team routinely uses 

TensorFlow and PyTorch along with other frameworks such as DarkNet (Redmon & Farhadi 

2017) for camera-trap focused research. Integration with R is straight-forward via exposure to 

a web-service API or via direct export of framework results as csv files. Within R, there are 

Python binding libraries which also allow access to Python code from within R and the 

TensorFlow interface package (Allaire & Tang 2017) also provides a comparatively easy way 

of accessing the full TensorFlow framework from within R. In summary, there a range of 

alternative options to the MLWIC package which are accessible with programming knowledge. 
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AnimalFinder (Tack et al. 2016) is a MATLAB 2016a script available to assist with the 

detection of animals in time-lapse sequence camera trap images. This process is however semi-

automated and does not provide species identification, it also requires access to a MATLAB 

software licence and corresponding software scripting skills. AnimalScanner (Yousif et al. 

2019) is a similar software application providing both a MATLAB GUI and a command line 

executable to scan sequences of camera trap images and identify three categories (empty 

frames, humans or animals) based on foreground object segmentation algorithms coupled with 

deep learning.  

The Wildlife Insights ( https://wildlifeinsights.org ) promises to provide cloud-based 

analysis services including automated species recognition but it is yet to be launched. The 

eMammal project provides both a cloud service and the Leopold desktop app  (Forrester et al. 

2013). The Leopold eMammal desktop app uses computer vision technology to search for 

cryptic animals within a sequence and place a bounding box around the suspected animal (He 

et al. 2016b). The objectives and functions of eMammal are however quite broad and support 

citizen science identifications, expert review, data curation and training within the context of 

monitoring programs and projects. This approach is very different from the approach adopted 

by ClassifyMe which is a dedicated on-demand application focused on automated species 

recognition on a user’s local machine with no requirement to upload datasets to 3rd party 

sources. The iNaturalist project ( https://www.inaturalist.org ) is of a similar nature but focused 

on digital or smartphone camera acquired imagery from contributors across the world and uses 

deep learning convolutional neural network models to perform image recognition within its 

cloud platform to assist with review by citizen scientists. Whilst very useful with a wide user 

base, iNaturalist doesn’t specifically address the domain challenges of camera trap imagery. 

Motion Meerkat is a software application which also utilises computer vision in the form of 

mixture of Gaussian models to detect motion in videos which reduces the number of hours 

required for researcher review (Weinstein 2015). There is further wide range of software 

available including Renamer (Harris et al. 2010), Snoopy (Smedley & Terdal 2014) and VIXEN 

(Ramachandran & Devarajan 2017) to support camera trap data management. Young, Rode-

Margono & Amin (2018) provide a detailed review of currently available camera trap software 

options.  

An important design decision of ClassifyMe was not to allow end-users to train their 

own models. This is in contrast to software such as the MLWIC package. This decision is 

motivated by both legal aspects and quality control as opposed to commercial reasons.  Of 

particular concern is use of the software to determine field locations of prized species that 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/646737doi: bioRxiv preprint first posted online May. 24, 2019; 

http://dx.doi.org/10.1101/646737
http://creativecommons.org/licenses/by-nc-nd/4.0/


poachers could then target. These concerns are valid, with recent calls having been made for 

scientists to restrict publishing location data of highly sought-after species in peer-reviewed 

journals (Lindenmayer and Scheele 2017).  Such capabilities could be of use to technological 

inclined poachers and providing such software, along with the ability to modify that software 

presented a number of potential legal issues. Similar concerns exist concerning human privacy 

legislation as outlined in Butler & Meek (2013) and Meek & Butler (2014). The strict 

registrations, legal and technological controls implemented within ClassifyMe are designed to 

minimise risk of misuse.  

Allowing end-users to train their own models also presents quality control issues. The 

deep networks utilised within ClassifyMe (and similar software) are difficult to train to optimal 

performance and reliability. Specialised hardware and its configuration are also required for 

deep learning frameworks which can be challenging even for computer scientists. Data access 

and the associated labelling of datasets is also another major consideration, many users might 

not have sufficient sighting records nor the resources to label their datasets. The risk of 

developing and deploying a model which provides misleading results in practice is high with 

the potential consequences on wildlife observation programs quite serious. Schneider, Taylor 

& Kremer (2018) compared the performance of the YOLOv2 and Faster R-CNN object 

detectors on camera trap imagery. The YOLOv2 detector performed quite poorly with an 

average accuracy of 43.3 ±  14.5% (compared to Faster R-CNN which had an accuracy of 76.7 

± 8.31 %) on the Gold-Standard Snapshot Serengeti dataset. The authors suggested that the 

low performance was due to limited data. Our results clearly indicate that YOLOv2 can 

perform well with strict data quality control protocols. Furthermore, the ClassifyMe YOLOv2 

model is most effective at longer-term study sites where the model has been calibrated using 

annotated data specific to the study site. ClassifyMe is designed to integrate well with a range 

of object detection frameworks including Faster-RCNN which is utilised within the software 

development team for research purposes. Future editions of ClassifyMe might also explore use 

of other detection frameworks or customised algorithms based on our on-going research.  

ClassifyMe resolves the issue of model development for practitioners by out-sourcing 

model development to domain experts who specialise in the development of such technology 

in collaborative academic and government joint research programs. Users can request model 

development, either for private use via a commercial price or for public use which is free and 

on provision of image data sets to a protocol standard the model will be developed and assessed 

for deployment as a ClassifyMe model library. ClassifyMe is designed to enable the selection 

of a suitably complex model to ensure good classification performance, but to also enable 
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storage, computation and processing within a reasonable time frame (benchmark range 1-1.5 

seconds per image, Intel i7 16GB RAM) on end user computers. Cloud based solutions, such 

as those used in the Kiwi Rescue and Wild Dog Alert programs have the capacity to store data 

in a central location using a larger neural network structure on high-performance computer 

infrastructure. Such infrastructure is costly to run and is not ideal for all end-users.  

 

Conclusion: 

Camera trapping is commonly used to survey wildlife throughout the world but its 

Achilles-heel is the huge time and financial cost of processing data, together with the risks of 

human error during processing tasks. The integration of computer science and computer vision 

in camera trap image analysis has led to considerable advances for camera trap practitioners. 

The development of automated image analysis systems has filled an important gap between 

capturing image data in the field and analysing that data so it can be used in management 

decision making. ClassifyMe is a tool of un-matched capability for field-based operations to 

camera trap practitioners and organisations across the world. 
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Appendix A1: ClassifyMe UML Structure Diagram 
 

 
 

Figure A1.1: ClassifyMe Block diagram 
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Figure A1.2: ClassifyMe Basic UML (Security Removed) 
 
 

 
Figure A1.3: ClassifyMe Frame/GUI UML  
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Figure A1.4: ClassifyMe Menu Bar & Configuration Dialogue 
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Figure A1.5: ClassifyMe Model Management. 
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Figure A1.6: ClassifyMe Image Classification. 
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Appendix A2: Data Presentation Standard for ClassifyMe Software  

In order to develop ClassifyMe models for each site, our team needs the following information. 
Please note this form provides instructions on how we would like data to be presented for 
addition to the model. This document is not confirmation that UNE or NSW DPI will undertake 
or commit to development of a specific model. Provision of data to UNE and DPI is gratefully 
accepted and will not be used or provided to any other parties. Data will only be used for model 
development and refinement. The number of images for each category is our preferred 
minimum, lower numbers of images or unequal numbers of images per category or illumination 
class doesn’t necessarily prevent us developing a model We will assess the data provided and 
advise you if we cannot provide a model for your data.  

Step 1. Model Name  

Please provide a suggested name for the model. This should be reflective of the location where 
the camera trap data was collected. Please try to limit the name to 20 characters or less e.g. 
CoffsCoast.  

Step 2. Metadata  

Please provide the following details:  

1. Principle Scientist/Senior Manager approving the provision of data  
2. Institution or agency with ownership rights to data  
3. Site of data collection  
4. Date of collection  
5. Camera trap models  
6. Details of settings and placement of camera traps  
7. List of the species of interest  

Step 3. Naming Convention  

There is no specific naming convention, but please don’t send images with just the filename 
used by the camera trap. We suggest renaming files using RENAMER to a simple code that 
you will recognise and so that each image has a unique identifier name.  

Step 4. Model Data  

We require a dictionary (folders) of all key species/category. In each folder, we require sub- 
folders for each illumination class e.g. Day (natural illumination), Night (IR illumination), and 
if used Night (*white-flash illumination). Please only organise to Genus level for 
species/categories. We also require false positive images which just show the landscape with 
no animals/objects in the frame.  

These sub-folders should be further partitioned into folders describing each species/category, 
for example;  
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1. Coffs Coast/Night Infra Red/Macropod – 1230 photos  
2. Coffs Coast/Day/Macropod – 1230 photos  
3. Coffs Coast/ Day/False Positive – 1230 photos  
4. Coffs Coast/ Night/False Positive – 1230 photos  

We require equal numbers of images for each dataset i.e. each species/category per illumination 
class needs to have 1230 images, if you have more that is helpful but please keep the number 
of images consistent for each category.  

Step 5: Send Data, Forms and Information  

Please contact Paul Meek to organise model development in order for us to organise our data 
science team resources. Data will need to be uploaded to a cloud service or sent via thumb 
drive or hard drive.  

Additional Notes  

We currently focus on processing camera trap images where the camera has been set in the 
horizontal alignment and as such the camera trap PIR is horizontal with the horizon.  

Please do not reduce resolution of the original camera trap images or perform any other form 
of image processing. Consult with us first if you have special processing requirements.  

Random sampling across a variety of contexts, image backgrounds, poses, distances etc. is 
preferred if possible to make the system more robust.  

For species/categories with insufficient data, the category ‘Other’ can be provided. This will 
ensure ClassifyMe is trained to detect animals/birds/interesting object categories in general.  

Please do not send any images of humans for privacy reasons.  

If you have individually recognisable animals and have enough images of them in natural and 
infra-red illumination, we would ask that you provide these animals in separate folder 
categories for example Kakudu /AnimalName/Day/Dingo and 
Kakudu/AnimalName/Night/Dingo. We need as many images per individual as possible but 
not exceeding 1000. These same animals can be included in the main data set as well.  

* If you have IR and White flash photos for the night photos we need separation of IR and 
white flash and again 1230 images of each sub-category.  

Please contact:  

Dr Paul Meek  
paul.meek@dpi.nsw.gov.au  
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Appendix A3: ClassifyMe Model Assessments 
 
 
This appendix reports on the results of ClassifyMe applied in 5 different environments. These 
environments are: (i) New England Tablelands, New South Wales, Australia; (ii) Wisconsin, USA; 
(iii) South Western USA; (iv) Serengeti Plains, Tanzania and (v) New Zealand. Independent 
classification models were developed for each of these locations and where data permitted separate 
models within each location for natural and infrared illumination. Details of the hardware, datasets, 
model configuration and evaluation results are provided in order to provide a general assessment of 
ClassifyMe performance across diverse settings. 
 
A3.1: New England New South Wales, Australia 
 
Overview: 
 
The New England region of New South Wales (NSW), Australia comprises extensive sheep stations 
in pastoral environments adjoining extensive sclerophyll bushland throughout the Great Dividing 
Range. The species cohort consists of a diverse mix of livestock, introduced and native animals. 
Camera trap monitoring in the region consists of either monitoring remnant vegetation on sheep 
stations or monitoring animal movements along vehicle access trails in state reserves and national 
parks. The dataset assessed represents the most frequent species or categories occurring at regional 
study sites for which it was possible to obtain annotations. More comprehensive sampling and 
species/category coverage is envisaged although the current capabilities provided by the ClassifyMe 
are already relevant and of significant assistance to research programs within this region. 

 
Category Natural Sample Size 

(Training){Validation}[Test] 
IR Sample Size 

(Training){Validation}[Test] 
Cat (800){100}[100] (800){100}[100] 
Dog (800){100}[100] (800){100}[100] 
Fox (800){100}[100] (800){100}[100] 

Human (800){100}[100] (800){100}[100] 
Macropod (800){100}[100] (800){100}[100] 

Sheep (800){100}[100] (800){100}[100] 
Vehicle (800){100}[100] (800){100}[100] 
Other (800){100}[100] (800){100}[100] 
NIL (800){0}[100] (800){0}[100] 

 
Table A3.1.1: New England NSW, Australia dataset. Note the ‘Other’ dataset consisted of other animal categories 
of insufficient data to create a separate model category and included birds, cattle, echidnas, hares and rabbits. All 

images were captured using arrays of Scoutguard SG560KV or Reconyx HC600 Hyperfire cameras. 
 
 
Model Training and Assessment Procedure: 
 
A model training dataset was formed by randomly sampling (via software) 800 images per image 
category in both the natural illumination and IR illumination classes. This process was done to ensure 
balanced numbers of samples per category in order to avoid model bias to a particular category. 
Separate models were developed for the natural and IR illumination classes. Data augmentation 
consisted of random horizontal flip, random vertical flip, random rotation of 5 degrees and random 
colour jitter. The YOLOv2 framework was used for model training, via the “AlexeyAB” Windows 
port: https://github.com/AlexeyAB/darknet . Select information is provided in Table A3.1.2 and  the 
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full YOLOv2 configuration file is provided as supplementary material (‘NewEnglandNat.cfg’) which 
is representative of the training procedure adopted across all models reported. Model assessment was 
performed by inspecting detection performance on the training dataset (Table A3.1.3), along with 
evaluation on the randomly held-out test datasets via confusion matrices (Tables A3.1.4 and Tables 
3.1.5) and key model performance statistics (Table A3.1.6). Model assessment in the tables presented 
was based on uniform class probabilities of annotated test datasets specific to the environment. 
Balanced designs, with equal probability of each category allows estimation of performance metrics 
with no bias to a particular category. 
 
Model Training Information: 
 
 

 Natural Illumination IR illumination 
Batch Size: 64 64 
Decay Rate: 0.0005 0.0005 

Hours of Training: Approx. 31 hours Approx. 36.5 hours 
Iterations (optimal weights): 22,700 26,600 

Images Processed: 7,200 7,200 
Learning Rate: 0.0001 0.0001 

Momentum: 0.9 0.9 
 

Table A3.1.2: Model Training Information, New England NSW, Australia Model. 
 

Class Natural Illumination 

(Average Precision) 

IR Illumination 

(Average Precision) 

Cat 99.65% 97.14% 

Dog 90.91% 90.91% 

Fox 90.91% 90.91% 

Human 90.91% 90.91% 

Macropod 80.87% 90.73% 

Sheep 86.46% 79.93% 

Vehicle 100.00% 90.91% 

Other 77.14% 90.36% 

 

Table A3.1.3: Detection Summary results: New England NSW model. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/646737doi: bioRxiv preprint first posted online May. 24, 2019; 

http://dx.doi.org/10.1101/646737
http://creativecommons.org/licenses/by-nc-nd/4.0/


P
re

d
ic

te
d

 
Actual 

 Cat Dog Fox Human Macropod NIL Other Sheep Vehicle Precision 
Cat 100 0 0 0 0 0 0 0 0 1.00 
Dog 0 100 0 0 0 0 0 0 0 1.00 
Fox 0 0 99 0 0 0 3 0 0 0.97 

Human 0 0 0 100 0 0 0 0 0 1.00 
Macropod 0 0 1 0 97 0 1 0 0 0.98 

NIL 0 0 0 0 2 100 8 0 0 0.91 
Other 0 0 0 0 0 0 91 0 0 1.00 
Sheep 0 0 0 0 1 0 0 100 0 0.99 

Vehicle 0 0 0 0 0 0 0 0 100 1.00 
Recall 1.00 1.00 0.99 1.00 0.97 1.00 0.91 1.00 1.00 Overall 

Model 
Accuracy: 

0.99 

 
Table A3.1.4: Confusion Matrix: New England NSW model (natural illumination). 
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Actual 
 Cat Dog Fox Human Macropod NIL Other Sheep Vehicle Precision 

Cat 100 0 0 0 0 0 0 0 0 1.00 
Dog 0 100 0 0 0 0 0 0 0 1.00 
Fox 0 0 100 0 0 0 2 0 0 0.98 

Human 0 0 0 100 0 0 0 0 0 1.00 
Macropod 0 0 0 0 97 0 0 1 0 0.99 

NIL 0 0 0 0 1 100 6 0 0 0.93 
Other 0 0 0 0 2 0 92 0 0 0.98 
Sheep 0 0 0 0 0 0 0 99 0 1.00 

Vehicle 0 0 0 0 0 0 0 0 100 1.00 
Recall 1.00 1.00 1.00 1.00 0.97 1.00 0.92 0.99 1.00 Overall 

Model 
Accuracy:  

0.99 

 
Table A3.1.5: Confusion Matrix: New England NSW model (IR illumination). 

Metric Natural Illumination IR Illumination 
Overall Accuracy  0.98556  0.98667  
Overall Accuracy Standard Error 0.00398 0.00382 
95% Confidence Interval [0.97776,0.99335] [0.97917,0.99416] 
Error Rate  0.01444 0.01333 
Matthews Correlation Coefficient 0.98388 0.98506 
True Positive Rate (Macro) 0.98556 0.98667 
True Positive Rate (Micro) 0.98556 0.98667 
Positive Predictive Value (Macro) 0.98655 0.98705 
Positive Predictive Value (Micro) 0.98556 0.98667 
AUNP 0.99187 0.9925 

 
Table A3.1.6: Test Statistics: New England NSW.  
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A3.2: Wisconsin, USA 
 

Overview:  
 
Wisconsin is a US State located in the MidWest and Great Lakes Region. The state features a diverse 
range of geographical features and environments including mixed hardwood and coniferous forests. 
Data was sourced from the Snapshot Wisconsin project 
(https://dnr.wi.gov/topic/research/projects/snapshot/) which involves a state-wide camera-trap 
monitoring program utilising community volunteers to annotate image data using Zooniverse 
(https://www.zooniverse.org) with a data subset suitable for machine learning research made 
available by the University of Minnesota Digital Repository 
(https://conservancy.umn.edu/handle/11299/199819) (Willi et al. 2018). Species and categories 
selected for inclusion in the ClassifyMe Wisconsin model are based on the frequency of images in 
the dataset available and guided by the data standard for development of public models as per 
Appendix A2.  The dataset was published under the Unversity of Minnesota Data Repository 
Policies and Terms of Use (https://conservancy.umn.edu/pages/drum/policies/#terms-of-use ).  
 
 

Category Natural Sample Size 
(Training)[Test] 

IR Sample Size 
(Training)[Test] 

Coyote (1107) [100] (1107) [100] 
Deer (1107) [100] (1107) [100] 
Elk (1107) [100] (1107) [100] 
Hare N/A (1107) [100] 
Raccoon N/A (1107) [100] 
Squirrel (1107) [100] (1107) [100] 
Turkey (1107) [100] N/A 
Other (1107) [100] (1107) [100] 
NIL (1107)[100] (1107)[100] 

 
Table A3.2.1: Wisconsin, USA dataset. Note the ‘Other’ dataset consisted of other animal categories of insufficient 

data to create a separate model category and included porcupine, mink, fisher, bird, bobcat, cat, otter, small 
mammals, opossum and sandhill crane.  

 
 
Model Training and Assessment Procedure: 
 
Model training and assessment was similar to that performed in Section A3.1 for the New England, 
NSW model. The key differences were the source dataset, the category coverage and the number of 
training images per category. Tables A.3.2.1 and A.3.2.2 provide key details on the model training 
performance and species coverage. The ‘Other’ category incorporated random samples from the 
porcupine, mink, fisher, bird, bobcat, cat, otter, small mammals, opossum and sandhill crane 
categories. Model assessment results are reported in Tables A3.2.3, A3.2.4, A3.2.5 and A3.2.6. 
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Model Training Information: 
 

 Natural Illumination IR illumination 
Batch Size: 64 64 
Decay Rate: 0.0005 0.0005 

Hours of Training: Approx. 24.8 hours Approx. 31.3 hours 
Iterations (optimal weights): 18,000 22,700 

Images Processed: 6,642 7,749 
Learning Rate: 0.0001 0.0001 

Momentum: 0.9 0.9 
 

Table A3.2.2: Model Training Information, Wisconsin, USA Model. 
 

Class Natural Illumination 

(Average Precision) 

IR Illumination 

(Average Precision) 

Coyote 90.80% 90.87% 

Deer 90.82% 90.77% 

Elk 90.89% 90.71% 

Hare N/A 90.84% 

Raccoon N/A 90.87% 

Squirrel 90.01% 76.72% 

Turkey 89.83% N/A 

Other 87.97% 90.78% 

 

Table A3.2.3: Detection Summary results: Wisconsin, USA model. 

 

P
re

d
ic

te
d

 

Actual 
 Coyote Deer Elk NIL Other Squirrel Turkey Precision 

Coyote 93 0 0 0 3 0 0 0.97 
Deer 5 100 0 2 0 0 0 0.93 
Elk 0 0 100 0 4 0 0 0.96 
NIL 0 0 0 95 1 5 0 0.94 

Other 1 0 0 1 91 1 0 0.97 
Squirrel 0 0 0 1 0 92 0 0.99 
Turkey 1 0 0 1 1 2 100 0.95 

Recall 0.93 1.00 0.86 0.95 0.91 0.92 1.00 Overall 
Model 

Accuracy:  
0.96 

 

Table A3.2.4: Confusion Matrix: Wisconsin, USA model (natural illumination).  
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Actual 

 Coyote Deer Elk Hare NIL Other Racoon Squirrel Precision 
Coyote 94 0 0 0 1 0 0 0 0.99 
Deer 2 98 0 0 0 0 0 0 0.98 
Elk 0 0 100 0 0 0 0 0 1.00 

Hare 0 1 0 100 1 0 0 0 0.98 
NIL 0 1 0 0 95 0 0 1 0.98 

Other 3 0 0 0 2 98 0 0 1.00 
Raccoon 1 0 0 0 1 1 100 0 0.97 
Squirrel 0 0 0 0 0 1 0 99 0.99 
Recall 0.94 0.98 1.00 1.00 0.95 0.98 1.00 0.99 Overall 

Model 
Accuracy: 

0.98 

                                               
Table A3.2.5: Confusion Matrix: Wisconsin, USA model (IR illumination).  

 

Metric Natural Illumination IR Illumination 
Overall Accuracy   0.95857 0.98 
Overall Accuracy Standard Error 0.00753 0.00495 
95% Confidence Interval [0.94381,0.97333] [0.9703,0.9897] 
Error Rate  0.04143 0.02 
Matthews Correlation Coefficient 0.95188 0.97719 
True Positive Rate (Macro) 0.95857 0.98 
True Positive Rate (Micro) 0.95857 0.98 
Positive Predictive Value (Macro) 0.95931 0.9802 
Positive Predictive Value (Micro) 0.95857 0.98 
AUNP 0.97583 0.98857 

 

Table A3.2.6: Test Statistics: Wisconsin, USA. 

 
A3.3: South Western, USA 
 

Overview: 
 
The South Western, USA comprises camera trapping data from the Caltech Camera Traps dataset 
(https://beerys.github.io/CaltechCameraTraps/) with the specific data used for building the model 
provided by the Labeled Information Library of Alexandria: Biology and Conservation 
(http://lila.science/datasets/caltech-camera-traps) and has been previously reported on in Beery, Van 
Horn & Perona (2018). The full data set contains 243,187 images from 140 camera locations thereby 
representing a diverse range of environments and conditions. A random subset of the data was selected 
to match the ClassifyMe data requirements as close as possible as per Appendix A2. The Caltech 
camera trap dataset was published under the following Community Data Licence Agreement 
(https://cdla.io/permissive-1-0/ ) . 
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Category Natural Sample Size 
(Training)[Test] 

IR Sample Size 
(Training)[Test] 

Bobcat (1107) [100] (1107) [100] 
Cat (1107) [100] (1107) [100] 
Coyote (1107) [100] (1107) [100] 
Dog (1107)[100] N/A 
Opossum N/A (1107) [100] 
Other (1107) [100] (1107) [100] 
Rabbit (1107)[100] (1107)[100] 
Raccoon N/A (1107) [100] 
Squirrel (1107)[100] N/A 
NIL (0)[100] (0)[100] 

 
Table A3.3.1: South Western, USA dataset. Note the ‘Other’ dataset consisted of other animal categories of 

insufficient data to create a separate model category and included skunk, deer, raccoon, opossum, car. The ‘NIL’ 
category was unavailable for the natural light dataset and not used in either model training or testing. 

 
Model Training Information: 
 

 Natural Illumination IR illumination 
Batch Size: 64 64 
Decay Rate: 0.0005 0.0005 

Hours of Training: Approx. 26 hours Approx. 26 hours 
Iterations (optimal weights): 18,000 18,100 

Images Processed: 6,642 7,749 
Learning Rate: 0.0001 0.0001 

Momentum: 0.9 0.9 
 

Table A3.3.2: Model Training Information, South Western, USA Model. 
 

Class Natural Illumination 

(Average Precision) 

IR Illumination 

(Average Precision) 

Bobcat 90.66% 90.75% 

Cat 90.81% 90.73% 

Coyote 90.90% 90.82% 

Dog 90.88% N/A 

Opossum N/A 90.84% 

Other 78.02% 90.41% 

Rabbit 90.08% 90.81% 

Raccoon N/A 89.18% 

Squirrel 89.93% N/A 

 

Table A3.3.3: Detection Summary results: South Western, USA model. 
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Actual 
 Bobcat Cat Coyote Dog NIL Other Rabbit Squirrel  Precision 

Bobcat 97 0 0 0 0 0 1 0 0.99 
Cat 1 99 0 1 0 0 0 0 0.98 

Coyote 1 0 99 0 1 0 0 0 0.99 
Dog 0 0 0 99 0 0 0 0 1.00 
NIL 0 0 0 0 96 0 0 0 1.00 

Other 0 0 0 0 1 97 0 0 1.00 
Rabbit 0 0 0 0 0 0 94 2 0.98 

Squirrel 0 0 0 0 2 0 1 93 0.99 
Recall 0.97 1.00 0.99 0.99 0.96 0.97 0.94 0.93 Overall 

Model 
Accuracy:  

0.97 

 
Table A3.3.4: Confusion Matrix: South Western, USA model (natural illumination) 
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Actual 
 Bobcat Cat Coyote Opossum Other NIL Rabbit Raccoon  Precision 

Bobcat 99 1 0 0 0 0 0 1 0.99 
Cat 0 98 1 0 0 0 0 0 0.99 

Coyote 0 0 98 0 0 0 0 0 1.00 
Opossum 0 0 0 100 0 0 0 0 1.00 

Other 0 0 1 0 96 2 0 0 0.97 
NIL 0 1 0 0 0 98 0 0 0.99 

Rabbit 1 0 0 0 2 0 100 0 0.97 
Raccoon 0 0 0 0 0 0 0 99 1.00 

Recall 0.99 0.98 0.98 1.00 0.96 0.98 1.00 0.99 Overall 
Model 

Accuracy:  
0.99 

 

Table A3.3.5: Confusion Matrix: South Western, USA model (IR illumination).  

 

Metric Natural Illumination IR Illumination 
Overall Accuracy   0.9675 0.985 
Overall Accuracy Standard Error 0.00627 0.0043 
95% Confidence Interval [0.95521,0.97979] [0.97658,0.99342] 
Error Rate  0.0325 0.015 
Matthews Correlation Coefficient 0.96298 0.98287 
True Positive Rate (Macro) 0.9675 0.985 
True Positive Rate (Micro) 0.9675 0.985 
Positive Predictive Value (Macro) 0.96883 0.98512 
Positive Predictive Value (Micro) 0.9675 0.985 
AUNP 0.98143 0.99143 

 

Table A3.3.6: Test Statistics: South Western, USA. 
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A3.4: Serengeti Plains, Tanzania 
 

Overview: 
 
The Snapshot Serengeti project is a well-known project featuring approximately 3.2 million images 
and annotated by volunteers using Zooniverse (https://www.zooniverse.org). The dataset is described 
in Swanson et al. (2015) and features camera trap images of 40 mammal species on the African 
savanna. We utilised the dataset provided by the Labeled Information Library of Alexandria: Biology 
and Conservation (http://lila.science/datasets/snapshot-serengeti) in order to access annotated data 
suitable machine learning object detection. The Snapshot Serengeti dataset is highly unbalanced across 
categories which is reflective of the data recorded by the camera traps in operational environments. 
Categories selected for inclusion in the ClassifyMe Serengeti model were based on the most frequent 
categories and also meeting the minimum number of annotated images to ensure model quality control. 
Camera trap images included both natural and flash illumination, the ClassifyMe Serengeti model does 
not presently distinguish between these two illumination categories.  Future work on the model will 
focus on the expansion of species and categories covered and potentially illumination specific models. 
This dataset was accessed under the Community Data Licence Agreement (https://cdla.io/permissive-
1-0/).  
 

Category Sample Size 
(Training){Validation}[Test] 

Baboon (1400){175}[175] 
Cheetah (1400){175}[175] 
Elephant (1400){175}[175] 
Gazelle (1400){175}[175] 
Giraffe (1400){175}[175] 
Human (1400) {175}[175] 
Hyena (1400){175}[175] 
Lion (1400){175}[175] 
Wildebeest (1400){175}[175] 
Zebra (1400){175}[175] 
NIL (0){0}[175] 

 
Table A3.4.1: Serengeti, Tanzania dataset.  

 
Model Training Information: 
 

Batch Size: 64 
Decay Rate: 0.0005 

Hours of Training: Approx. 39.5 hours 
Iterations (optimal weights): 28,000 

Images Processed: 14,000 
Learning Rate: 0.0001 

Momentum: 0.9 
 

Table A3.4.2: Model Training Information, Serengeti, Tanzania Model. 
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Class  Average Precision 

Baboon 77.43% 

Cheetah 88.76% 

Elephant 79.45% 

Gazelle 81.16% 

Giraffe 80.41% 

Human 90.08% 

Hyena 90.91% 

Lion 90.26% 

Wildebeest 79.62% 

Zebra 80.92% 

 

Table A3.4.3: Detection Summary results: Serengeti, Tanzania model. 

 

P
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Actual 
 Baboon Cheetah Elephant Gazelle Giraffe Human Hyena Lion NIL WBeest Zebra Precision 

Baboon 174 0 0 0 1 1 1 0 1 0 0 0.98 
Cheetah 0 174 0 0 0 0 0 1 0 0 0 0.99 
Elephant 0 0 175 0 0 1 0 0 0 0 0 0.99 
Gazelle 0 0 0 172 0 0 0 0 0 0 0 1.00 
Giraffe 0 0 0 0 174 0 0 0 3 0 0 0.98 
Human 0 0 0 1 0 170 0 0 0 0 0 0.99 
Hyena 0 0 0 0 0 0 174 1 0 0 0 0.99 
Lion 0 0 0 0 0 0 0 173 0 0 0 1.00 
NIL 1 0 0 2 0 3 0 0 170 0 0 0.97 

WBeest 0 0 0 0 0 0 0 0 0 175 0 1.00 
Zebra 0 1 0 0 0 0 0 0 1 0 175 0.99 

Recall 0.99 0.99 1.00 0.98 0.99 0.97 0.99 0.99 0.97 1.00 1.00 Overall 
Model 

Accuracy 
0.99 

 
Table A3.4.4: Confusion Matrix: Serengeti, Tanzania model. WBeest denotes Wildebeest. 

 

 

 

Metric Magnitude 
Overall Accuracy   0.99013 
Overall Accuracy Standard Error 0.00225 
95% Confidence Interval [0.98571,0.99455] 
Error Rate  0.00987 
Matthews Correlation Coefficient 0.98915 
True Positive Rate (Macro) 0.99013 
True Positive Rate (Micro) 0.99013 
Positive Predictive Value (Macro) 0.99020 
Positive Predictive Value (Micro) 0.99013 
AUNP 0.99457 

 

Table A3.4.5: Test Statistics: Serengeti, Tanzania 
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A3.5: New Zealand 
 

Overview: 
 

The New Zealand data set consists of camera trapping data from the Kiwi Rescue program (Falzon & Glen 

2018). The Kiwi Rescue program represents an inter-institutional collaboration of government and academic 

scientists focused on the recovery of Kiwi (Apteryx spp.) populations. Camera traps were utilised in this program 

for predator surveillance and monitoring of Kiwi populations. Image data was obtained from sites across New 

Zealand, particularly Fiordland in the South Island. The dataset was provided by A. Glen of Manaaki Whenua 

– Landcare Research, Auckland, New Zealand and consisted of 5,228 annotated camera trap images (9.57GB) 

relevant to New Zealand Kiwi population monitoring. Due to the limited number of images per category across 

illumination classes, the data set was combined into monochrome format by transforming RGB colour images 

to grey-scale images. Therefore, only a single model was developed and evaluated for the NZ dataset. 

 

 
Category Sample Size 

(Training){Validation}[Test] 
Bird (714){94}[20] 
Cat (174){21}[20] 
Hedgehog (765){101}[20] 
Kiwi (837){110}[20] 
Sheep (940){125}[20] 
Stoat (502) {66}[20] 
NIL (523){65}[20] 

 
Table A3.5.1: New Zealand dataset.  

 

Model Training Information: 
 

Batch Size: 64 
Decay Rate: 0.0005 

Hours of Training: Approx. 24.2 hours 
Iterations (optimal weights): 19,400 

Images Processed: 4,455 
Learning Rate: 0.0001 

Momentum: 0.9 
 

Table A3.5.2: Model Training Information, New Zealand Model. 
 
 
 
 
 
 
 
 

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/646737doi: bioRxiv preprint first posted online May. 24, 2019; 

http://dx.doi.org/10.1101/646737
http://creativecommons.org/licenses/by-nc-nd/4.0/


Class  Average Precision 

Bird 80.61% 

Cat 90.91% 

Hedgehog 90.91% 

Kiwi 90.91% 

Sheep 90.43% 

Stoat 90.91% 

 

Table A3.5.3: Detection Summary results: New Zealand Model. 
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Actual 
 Bird Cat Hedgehog Kiwi NIL Sheep Stoat Precision 

Bird 17 0 0 0 0 0 0 1.00 
Cat 0 20 0 0 0 0 0 1.00 

Hedgehog 0 0 20 0 0 0 0 1.00 
Kiwi 0 0 0 20 0 0 0 1.00 
NIL 3 0 0 0 20 0 0 0.87 

Sheep 0 0 0 0 0 20 0 1.00 
Stoat 0 0 0 0 0 0 20 1.00 

Recall 0.85 1.00 1.00 1.00 1.00 1.00 1.00 Overall 
Model 

Accuracy:  
0.98 

 
Table A3.5.4: Confusion Matrix: New Zealand Model.  

 

 

 

Metric Magnitude 
Overall Accuracy   0.97857 
Overall Accuracy Standard Error 0.01224 
95% Confidence Interval [0.95458,1.00256] 
Error Rate  0.02143 
Matthews Correlation Coefficient 0.97552 
True Positive Rate (Macro) 0.97857 
True Positive Rate (Micro) 0.97857 
Positive Predictive Value (Macro) 0.98137 
Positive Predictive Value (Micro) 0.97857 
AUNP 0.9875 

 

Table A3.5.5: Test Statistics: New Zealand. 
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A3.6: Computational Performance Evaluations 
 
 

Processor Mode RAM Dataset Number of Images 
(Testing) 

Mode 
(GPU/CPU) 

Total Time 
(seconds) 

Rate 
(Images/Second) 

I7-8700 
CPU @ 
3.20 GHz 

16 GB New England, NSW, 
Australia, Natural 
Illumination 

640 GPU 
 

440  1.455 

I7-8700 
CPU @ 
3.20 GHz 

16 GB New England, NSW, 
Australia, IR 

640 GPU 
 

 436  1.468 

I7-8700 
CPU @ 
3.20 GHz 

16 GB Wisconsin, USA, 
Natural Illumination 

738 GPU 
 

513  1.489 

I7-8700 
CPU @ 
3.20 GHz 

16 GB Wisconsin, USA, IR 861 GPU 
 

644  1.337 

I7-8700 
CPU @ 
3.20 GHz 

16 GB South Western, USA, 
Natural Illumination 

861 GPU 
 

613  1.405 

I7-8700 
CPU @ 
3.20 GHz 

16 GB South Western, USA, 
IR 

861 GPU 
 

779  1.105 

I7-8700 
CPU @ 
3.20 GHz 

16 GB Serengeti, Tanzania 2500 GPU 
 

1784  1.401 

I7-8700 
CPU @ 
3.20 GHz 

16 GB New Zealand, 
Monochrome 

120 GPU 
 

 92  1.304 

 
Table A3.6.1: ClassifyMe computational performance evaluation metrics. 
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