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A B S T R A C T

Structured Query Language (SQL) remains the standard language used in Relational
Database Management Systems (RDBMSs), and has found applications in healthcare
(patient registries), businesses (inventories, trend analysis), military, education, etc. Al-

though SQL statements are English-like, the process of writing SQL queries is often problem-
atic for non-technical end-users in the industry. Similarly, formulating and comprehending
written queries can be confusing, especially for undergraduate students. One of the pivotal
reasons given for these difficulties lies with the simple syntax of SQL, which is often mis-
leading and hard to understand. An ideal solution is to present these two audiences: under-
graduate students and non-technical end-users with learning and practice tools. These tools
are mostly electronic, and can be used to aid their understanding, as well as enable them
write correct SQL queries. This work proposes a new approach aimed at understanding and
writing correct SQL queries using principles from Formal Language and Automata Theory.
We present algorithms based on: regular expressions for the recognition of simple query con-
structs, context-free grammars for the recognition of nested queries and a jumping finite au-
tomaton for the synthesis of SQL queries from natural language descriptions. As proof of
concept, these algorithms were further implemented into interactive software tools aimed at
improving SQL comprehension. Evaluation of these tools showed that the majority of par-
ticipants agreed that the tools were intuitive and aided their understanding of SQL queries.
These tools should, therefore, find applications in aiding SQL comprehension at higher learn-
ing institutions and assist in the writing of correct queries in data-centered industries.
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P R E A M B L E

This PhD thesis investigates the problem of learning and writing correct SQL queries.
It presents a number of approaches to the problem of SQL comprehension and
synthesis. As a whole, it covers the application of the formal language and automata

theory to the problem of SQL comprehension and synthesis. This preamble, by way of an
introduction, provides the contributions and organisation of this thesis. It shows the list of
related domains with keywords and highlights non-academic talks that have been presented
on this work.

Technical contributions.
The technical contributions of this work are as follows:

1. Formal Language and Automata Theory: new formalisms for recognising SQL queries to
generate narrations using regular expressions (REs) and context-free grammars (CFGs),
and a jumping finite automaton (JFA) for synthesising SQL queries from natural lan-
guage specifications have been presented.

2. Software Prototypes: five software tools are presented. Firstly, S-NAR for assisting end-
users to understand simple SQL queries [Ade-Ibijola and Obaido 2017]; secondly,
a tool called the SQL Narrator for assisting end-users to understand nested SQL
queries [Obaido et al. 2019a]; thirdly, Narrations-2-SQL for translating natu-
ral language descriptions into SQL queries [Obaido et al. 2019b]; fourthly, the SQL
Visualiser that uses visual specifications to build a query [Obaido et al. 2018], and
finally, TalkSQL aimed at assisting end-users to understand SQL queries using speech
inputs [Obaido et al. 2019c].

3. Evaluation of Prototypes: The usefulness of these software tools was evaluated and the
evaluation results are presented.

Thesis organisation.
This thesis is organised into four parts. Part i contains the introduction, definition of terms and
a review of literature relevant to this study. Part ii and Part iii presents the major contributions
of this work. Part iv evaluates the developed tools and presents the conclusions and future
directions.

Domain of research.
The following categories shows the 2012 ACM3 CCS4 that this research is based on.

• Theory of computation, formal languages and automata theory, and grammars and
context-free languages.

• Applied computing, computer-assisted instruction and interactive learning environ-
ment.

• Computers and education, computer and information science education and computer
science education.

3 Association for Computing Machinery
4 Computing Classification System

ix



• Computing methodologies, artificial intelligence and natural language processing.

Keywords.
The keywords used in this research are as follows:

• SQL comprehension, SQL query narration, SQL tutoring, intelligent tutoring system,
regular languages, context-free grammar, jumping finite automaton, query by speech,
visual specifications, verbal specifications, natural language processing, learning via
visualisation, learning via narrations, language translation, relational database and
synthesis of things.

Non-academic Talks.
Some ideas of this thesis was presented at the following event.

• Doctoral Consortium of the ACM FAT*5 Conference in Atlanta, Georgia in the USA on
the 29th January, 2019.

5 Fairness, Accountability and Transparency
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

Structured Query Language (SQL) is the de facto query language for most rela-
tional databases, containing commands used to access and manipulate data. Since
released by Codd [1970], SQL has been used by most database vendors for their
products. Although SQL is highly declarative, many end-users encounter several
challenges in writing correct queries. Such challenges have limited its use as the
preferred database language of choice. This part of the thesis provides an introduc-
tion to what SQL is, describes several terms used, and reviews literature similar to
this work.

This part contains three chapters. Chapter 1 introduces and provides the context
for this research. Chapter 2 outlines several definitions that were used in this study.
Chapter 3 presents the literature on SQL comprehension and other areas of study.





1I N T R O D U C T I O N

For the past three decades, Structured Query Language (SQL) has been the preferred
database language for relational database management systems (RDBMSs) [Kawash
2014; Heller 2019a]. Since being adopted as an ANSI1 and ISO2 standard, SQL has

been widely used by most database vendors for their commercial products, such as IBM3

DB2, Microsoft SQL Server and Access, SAP HANA, Splunk DB, Teradata DB, etc [Levene and
Loizou 2012; Bonham-Carter 2014; Heller 2019b]. Similarly, many open-source RDBMSs have
been introduced that support SQL, such as Oracle’s MySQL, PostgreSQL, Mozilla’s Firebird,
MariaDB, Ingres, etc [Soflano et al. 2015; Heller 2019b].

SQL has found many applications in academia and industry [Borodin et al. 2016; Cham-
berlin 2012; de Silva 2017]. In higher learning institutions, SQL is taught as part of the
introductory database course in the undergraduate curriculum [Silva et al. 2016]. Learning
SQL is a pivotal skill that a Computer Science (CS) student ought to master as it is pertinent
for an entry role in many diverse industries [Cappel 2002; Sander and Wauer 2019]. Garner
and Mariani [2015] suggest that even non-technical end-users, such as financial managers,
stock brokers and controllers as well as HR managers in industry, should be able to write
queries as part of their job functions. However, that may not always be the case. Figure 1
shows the interaction between end-users and a RDBMS.

It is worth noting that SQL underpins a range of applications and programming languages
to allow users to manipulate and retrieve information. These applications range from e-
commerce, Internet of Things (IoT), commercial as well as open-source software. The follow-
ing examples show some applications of SQL:

1. A number of Extract Transform Load (ETL)4 tools such as SQL Server Integration Ser-
vices (SSIS), Skyvia and Informatica use SQL to communicate with databases.

2. Programming languages such as Python and PHP usually embed SQL in their query
strings when connecting to a database.

3. Top Business intelligence (BI) tools such as the Microsoft Power BI and Tableau use SQL
to create reports and charts while working with data.

4. Most mobile application development frameworks: hybrid (Ionic, PhoneGap, Xamarin,
etc) and native (Android Studio and Swift) support SQL in their engines; since many of
these frameworks support SQLite.

5. Big data analytic tools that support the RESTFUL API such as Elasticsearch and Sphinx
execute SQL queries to produce results.

Just like any other language, it is generally agreed that SQL is challenging for non-
technical end-users and undergraduate students alike [Bider and Rogers 2016; Grillenberger
and Brinda 2012; Folland 2016]. Many studies have identified the difficulties faced by

1 American National Standards Institute
2 International Organization for Standardization
3 International Business Machines
4 A data warehousing process for extracting data from different sources to fit into organisational needs

3
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Figure 1: An interaction between users and a RDBMS

non-technical end-users when writing SQL queries [Garner and Mariani 2015; Najar et al.
2016; Atchariyachanvanich et al. 2017]. These difficulties include: the burden of memorising
database schemas, its declarative nature, and the naive perception that SQL is easy. Li and
Jagadish [2014b] acknowledge that non-technical end-users struggle to comprehend queries
written by technical users [Li and Jagadish 2014b]. Similarly, Garner and Mariani [2015] noted
that this is also true for undergraduate CS students. They emphasise that students struggle to
learn SQL alongside a procedural or object-oriented programming language. Another study
by Ahadi et al. [2015] highlighted that simple and nested SQL queries are often problematic
for students. Hence, it has become imperative for researchers to design learning and practice
aids (mostly electronic) for these two audiences – undergraduate students, and non-technical
industry end-users – to aid their comprehension of SQL. Moreover, tools that provide brief
explanations of a query’s functionality and visualisation of a query’s output, can assist these
users in understanding SQL [Kokkalis et al. 2012; Danaparamita and Gatterbauer 2011]. In
addition, tools with speech recognition capabilities can assist visually impaired learners in
understanding SQL [Berque et al. 2003; Mealin and Murphy-Hill 2012].

This work introduces “SQL Comprehension and Synthesis”, using approaches that allow
users (students and non-technical end-users) to understand SQL queries and provide inter-
faces to write queries in clear English terms – in a natural language. Such approaches abstract
user-level queries and provide granularity of representation, identify syntax and semantic er-
rors and provide possible solutions. Query comprehension involves tasks that make use of a
mental process aimed at query reading and explanation [Shneiderman 1978; 2000]. Although
query comprehension has been investigated as patterns introduced to aid knowledge transfer
by Faroult and Robson [2006], it was specifically targeted for experienced database devel-
opers to solve more complex query tasks. However, if a novice user cannot even construct
simple queries, these patterns tend to offer no solution to the current challenge. Compared to
the program comprehension domain that has gained popularity in recent years [Storey 2006;
Ade-Ibijola et al. 2014; 2015], there are still many unexplored areas of research in the SQL
comprehension domain.

Over the past decades, the program comprehension domain has recorded many successes.
This is motivated by two classic cognitive theories, namely the top-down and bottom-up [Brooks
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1977; Storey 2006] approaches. The top-down approach focuses on how programs are per-
ceived by programmers based on a series of hypotheses. The bottom-up approach uses tools
to aid the comprehension process. This process was termed chunking, which shows obvious
parts of code that a programmer may recognise. Together, these theories are regarded as the
unified model [Von Mayrhauser and Vans 1993]. Within Computer Science Education, a sys-
tematic approach was introduced by Fincher [1999] aimed at teaching programming without
the syntax of the language. Such an approach is regarded as the Syntax-free Approach (SFA).
The SFA has been applied in many program comprehension problems in elementary educa-
tion [Mannila et al. 2014], middle-age education [Grover et al. 2015], and for undergraduate
programs [Lahtinen et al. 2005; Ade-Ibijola et al. 2014; 2015; Ade-Ibijola 2016b]. Therefore, this
was the approach employed in this research to assist students and non-technical end-users
understand SQL queries.

1.1 P R O B L E M D E S C R I P T I O N

This section describes the problems that were solved in this thesis. They are listed under the
following categories.

1.1.1 Generating Narratives for Simple Queries

Many tools have been developed to assist end-users understand SQL queries [Cembalo et al.
2011; Folland 2016]. The majority of these tools apply visualisation and interactive techniques
to aid the comprehension of SQL queries. While these tools have shown to be effective at
improving comprehension, many end-users struggle to understand the constructs and under-
lying logic behind SQL. Given this difficulty, it is important to granulate these queries into a
form that is free from SQL syntax. With respect to this, we have answered these questions:

1. How else can we abstract queries so that they are easily understood by students and
non-technical end-users?

2. Can we design a tool that addresses this problem?

To answer these questions, we took a cue from the program comprehension domain. Within
the programming pedagogy, Fincher [1999] suggested that if teaching a programming lan-
guage with the syntax affects the learning process, teaching without it would attempt to avoid
it. In her words, this is “paradoxical” [Fincher 1999]. The author suggested that the ideal way
of teaching a programming language was the SFA, which abstracts the syntax of the language
into a readable form. That is, translating programs back into syntax-free algorithms specified
in natural language descriptions known as “narrations” [Ade-Ibijola et al. 2014]. Hence, we
propose a tool that generates narratives for simple SQL queries using Regular Expressions (REs) for
SQL comprehension.

1.1.2 Generating Narratives for Nested Queries

A number of studies have identified that nested queries pose great difficulties for end-users
[Woolf 2010; Ahadi et al. 2016]. In particular, end-users struggle to understand nested query
constructs using the SELECT commands and GROUPBY clauses. An end-user who struggles
to understand a simple SQL query will surely find nested queries challenging. Many tools
have been built to handle simple queries, hence there is a growing demand for tools that
aid nested SQL query comprehension [Neumann and Kemper 2015]. It has become attractive
for researchers to develop tools that handle these types of queries. We have answered the
following questions:

1. How can we abstract nested SQL queries so that users can understand them?

2. Can we develop a tool for this?
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Given these questions, we extended the use of narrations to describing nested queries using a
Context-free Grammar (CFG) for nested SQL query comprehension. Since nested queries appear
in more complex forms, REs are not suitable to handle this hitch as they are only useful for
lexical analysis.

1.1.3 Synthesising SQL Queries from Narrations

In the business sector, many professionals such as financial analysts, marketing executives,
stock brokers, and mining experts use DB applications on a daily basis. These end-users of-
ten are unable to write correct queries. In most cases, they can clearly describe the intended
task but lack the ability to formulate a correct query. As a result, they seek help from online
sources and from technical experts to assist them with their query operation [Yaghmazadeh
et al. 2017a]. Zhang and Sun [2013] identified two popular approaches to assist end-users in
writing SQL queries: Graphical User Interfaces (GUIs) and the use of programming languages.
It is worth noting that most RDBMSs are designed with GUI features that an end-user may
struggle to find. Even so, writing SQL alongside a programming language requires good tech-
nical skills. Since end-users lack good programming skills, they may struggle to write correct
SQL queries [Folland 2016; Prior 2014]. An ideal approach would be to allow these users to
express their requests in natural language. We have used the term “narrations” to describe a
natural language. The following questions have been answered:

1. How can we synthesise SQL queries from narrations?

2. Can we describe an approach that automatically synthesises these queries?

3. Can we develop a tool for this?

4. What are end-users’ perceptions of the tool?

To answer this question, an approach that considers a context-sensitive language such as a
natural language will suffice. Since natural languages are ambiguous, we propose the use of a
Jumping Finite Automaton (JFA) to translate natural language descriptions into SQL queries.

1.1.4 Generating SQL Queries using Visual Specifications

Many RDBMSs contain query builders which are used to visualise a database schema through
multiple mouse clicks [Marcus et al. 2019]. Query builders allow a user to specify a query
which retrieves multiple columns and table relations from a database. Whilst this approach
provides many advantages, end-users need to remember that memorising a database schema
may be difficult [Garner and Mariani 2015]. In some cases, syntax errors from RDBMSs may
be difficult for end-users to debug and the feedback received may not offer much help [Lavbič
et al. 2017]. In addition, the SQL SELECT command is often problematic for learners [Sadiq et
al. 2004]. In relation to this, we have answered the following questions:

1. Which visualisation would assist users understanding of SQL queries?

2. Does our approach require knowledge of SQL?

3. Can we compare our approach with other existing tools?

To answer these questions, we propose an image query visualiser that uses the drag and drop
interactions to generate a SQL query.

1.1.5 Generating SQL Queries using Verbal Specifications

Many Intelligent Tutoring Systems (ITSs) use speech commands to provide immediate and
customised instruction to serve both educational and industrial needs [Graesser et al. 2012].
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Whilst these speech ITSs perform operations seamlessly, they only consider the SELECT state-
ment, ignoring other query commands [Garner and Mariani 2015]. In addition, some speech
ITSs fail to provide comprehensive feedback to a user. The following questions have been
answered:

1. Can we build a tool that supports speech inputs?

2. Can visually impaired users use this tool?

To answer these questions, we propose a speech-based system that takes speech inputs from a user,
converts these into a query and provides speech, textual and visual feedback to the user.

1.2 R E S E A R C H C O N T E X T

1.2.1 Aim and Objectives

The aim of this research is to develop a new approach that makes it easier to assist non-
technical end-users and students to understand SQL queries and also build software tools
that tests this new approach. The objectives that make up the aim are to:

1. aid the comprehension of queries through narrations. The term “narrations” was first coined
by Ade-Ibijola et al. [2014] used to describe a textual approach aimed for novice program
comprehension. This textual approach describes a program’s functionality free from a
program’s syntax, which is written in plain text. This idea is based on the SFA idea
by Fincher [1999]. In this work, we have extended the use of narrations to describe
simple and nested queries. This will be based on REs and CFGs, two formal language
techniques for generating languages.

2. translate natural language specifications of queries into standard SQL queries. In most cases,
non-technical end-users struggle to write correct SQL queries. This aspect of the research
focuses on assisting non-technical end-users to write SQL queries. It allows end-users
to specify their request using a natural language, which undergoes a number of trans-
formations before a query is generated. This uses a JFA, an automata algorithm.

3. build an interactive visualiser. Visualisation has shown to improve the cognitive workload
for understanding a concept [Cembalo et al. 2011; Mitrovic and Ohlsson 2016]. The vi-
sualisation we have employed uses images depicting SQL operations to build queries.
This approach uses the ‘drag and drop’ interactions for generating SQL queries.

4. build a speech to SQL query synthesiser. This is meant to assist users understanding of
queries using speech inputs. This aspect also employs REs for the recognition of queries
for feedback generation.

5. evaluate the impact of the comprehension aids proposed. An online survey will be used to
determine the effect of this tools.

1.2.2 Scope

This research is based on the assumptions that:

1. the scope is confined to the use of formal language techniques using REs and CFGs for
the recognition of SQL queries, and an automata-based algorithm using a JFA for the
automatic synthesis of SQL queries from natural language specifications.

2. the focus will be on comprehending only SQL queries in simpler and nested forms.

3. we only focus on comprehending and synthesising SQL queries for these end-users,
namely: undergraduate students in higher learning institutions and non-technical users in
the business sectors.
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1.2.3 Questions

The questions of interest that have been answered in this research are as follows:

1. can we build tools that can automatically narrate an SQL query? – yes, we answered this
question in Part ii. In this part, we developed two tools; using REs to recognise simple
SQL queries (in Chapter 4) and a CFG for nested SQL query recognition (in Chapter 5).
The resultant narrations were presented in these chapters.

2. given good narrations, is it possible to come up with a valid SQL query? – yes, we showed that
this was possible. We used a JFA to recognise natural language descriptions and used
algorithms to generate a valid query. The idea is presented in Chapter 6 under Part iii.

3. can visually impaired users use these tools? Definitely, they can use these tools. We showed
that with the aid of a conversational tool in Chapter 7 in Part iii, that these type of
learners can use these tools to manipulate and access data from a database.

4. can these tools find applications in both academic and business environments? This question is
answered in Chapter 9 in Part iv. Participant feedback is also presented here.

1.3 T E C H N I C A L C O N T R I B U T I O N S

The contributions of this work are divided into three categories: formal techniques for the
comprehension and synthesis of SQL queries, software prototypes of these techniques and
evaluation of the prototypes.

1.3.1 Formal Language and Automata Theory

Formal language and automata theory (FLA) has been used in a wide spectrum of application
areas. This research explored the ideas from this domain for SQL understanding. In Part ii and
Part iii, we have:

1. designed REs, a class of regular languages for the recognition of SQL query constructs,

2. designed a CFG, a subset of irregular languages for the recognition of nested SQL
queries, and

3. used a JFA, an automata-based algorithm, to recognise natural language specifications.

1.3.2 Software Prototypes

The FLA algorithms using REs, CFG and JFA were implemented into a number of software
prototypes. The following prototypes are:

1. S-NAR [Ade-Ibijola and Obaido 2017]: We developed a tool that uses REs which auto-
matically generates a narration from a query in order to aid the comprehension of SQL
queries.

2. SQL Narrator [Obaido et al. 2019a]: This aspect is an improvement of S-NAR that
describes the automatic generation of narrations from nested SQL queries using a CFG.

3. Narrations-2-SQL [Obaido et al. 2019b]: We presented a tool that uses a JFA for the
recognition of natural language specifications of queries and translated them into a SQL
query.

4. SQL Visualiser [Obaido et al. 2018]: We used visual specifications that represent SQL
commands to build queries.
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5. TalkSQL [Obaido et al. 2019c]: We presented a speech-based system that takes speech
inputs from a user and uses REs to convert this into a query.

1.3.3 Evaluation of Prototypes

For each aspect of the study, we present the results of the evaluation of the tools that were
developed in Part iv.

1. S-NAR [Ade-Ibijola and Obaido 2017] was tested on 5000 queries and reported an accu-
racy of 96%.

2. SQL Narrator [Obaido et al. 2019a] reported that 98.1% agreed that the tool enabled
them understand nested queries.

3. Narrations-2-SQL [Obaido et al. 2019b] showed that 96.9% agreed the tool would be
helpful to end-users.

4. SQL Visualiser [Obaido et al. 2018] reported that 92.16% indicated that the tool aided
their understanding of SQL syntax.

5. TalkSQL [Obaido et al. 2019c] concluded that 87.6% acknowledged that the tool will
help visually impaired learners to write correct queries using speech inputs.

1.4 T H E S I S O R G A N I S AT I O N

Figure 2: The organisation of this thesis
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This thesis is organised into parts with ten chapters as depicted in Figure 2. The description
of Parts and Chapters are as follows.

PA R T I contains two chapters. Chapter 1 presents the introduction of this thesis and the con-
text. Chapter 2 highlights terms and definitions used in this work. Chapter 3 presents
the literature reviewed for this work.

PA R T I I focuses on the comprehension aspect using narrations for aiding SQL comprehen-
sion. In Chapter 4, narrations for simple queries using REs are introduced with detailed
illustrations on how this will aid learning SQL queries for the first time. Chapter 5 de-
scribes the generation of narrations using CFGs, aimed at assisting a user in understand-
ing nested queries.

PA R T I I I describes the synthesis aspect of our work in three chapters. Chapter 6 presents the
use of a JFA to synthesise SQL queries from natural language specifications. This aspect
shows the use of natural language descriptions to write SQL queries. Chapter 7 intro-
duces a visualiser to generate a query. The visualiser uses drag and drop interactions
using visual specifications to generate a query. Chapter 8 describes a speech to query
synthesiser, targeted at assisting end-users to write correct SQL queries using speech
inputs.

PA R T I V presents the evaluation and concluding aspects of this thesis in two chapters. Chap-
ter 9 provides the evaluation of the study. Chapter 10 presents the conclusion and future
directions of this work.



2D E F I N I T I O N O F T E R M S

This chapter presents the definitions of the terms used in this thesis. The terms are listed
in different categories across the following areas: FLA, SQL comprehension and con-
cepts, computational linguistics, and other terms.

2.1 F O R M A L T E R M S

Definition 1 (Lexical Analysis [Grune et al. 2012]). This is the initial phase of a compiler where
program texts are converted into a stream of tokens, white spaces and comments are removed.

Definition 2 (Syntax Analysis [Wilhelm et al. 2013]). At this phase, the stream of tokens re-
ceived at the lexical analysis phase is used to produce a tree-like data structure (parse tree
or abstract syntax tree). This phase uses a CFG to construct the parse tree. This phase is also
called parsing.

Definition 3 (Formal Language Theory [Post 1944; Perrin 2003]). The field of formal language
theory (FLT) has its root in mathematics. This became popular in 1956 when Noam Chomsky
conducted an investigation into natural languages [Chomsky 1956; 1959]. Since its inception,
FLT has been applied in different domains such as switching circuits, neural networks, com-
piler designs (parsers), cryptography and computer graphics [Karhumäki 2007; Kari 2013].
According to the Chomsky [1956] hierarchy, formal languages are categorised into classes
of increasing complexity such as regular languages, context-free languages, context-sensitive
languages and recursive enumerable languages. Each of these languages is generated from
grammars and can be defined by its respective types. For instance, regular languages are de-
fined by regular grammars, etc. Figure 3 presents Chomsky’s hierarchy.

Figure 3: Chomsky’s hierarchy of increasing complexity [Jäger and Rogers 2012]

Definition 4 (Basics [Dömösi et al. 2016; Chomsky 1956]). In this section, we present some
basic definitions.

• An alphabet, Σ, is a finite set or (collection) of symbols.

• A string or (word) is a finite sequence of zero or more symbols.

• A symbol is an abstract entity or an item.

• A language, L, is an infinite collection of strings over some alphabet Σ.

11
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• The symbol Σ∗ is a set of finite or (non-empty) strings over Σ, where the symbol (∗) is
known as the Kleene star.

• The symbol |w| is the length of a string w.

• The symbol λ or ε is an empty string.

Definition 5 (Regular Languages and Regular Expressions (REs) [Ruohonen 2009; Ade-Ibijola
2016a]). Let R denote the regular language over an alphabet Σ or RΣ. The REs that follow are:

1. ∅ is in R, representing the empty set.

2. λ is in R, representing the empty string.

3. For each symbol a, the language {a} in R, representing the regular expression a.

4. Let Lx and Ly is in R, then,

• Lx ∪ Ly is in R, representing the union of both languages.

• LxLy is in R, representing the concatenation of both languages. Lx∗ is in R, denoting
the Kleene star.

Regular languages have a wide range of applications from circuit design and text editing to
pattern matching [Câmpeanu et al. 2003; Yu 2012]. Their widespread use is due to their highly
expressive power. They have become well recognised pattern matching languages [Yu 2012].

Definition 6 (Context-free grammars (CFGs) [Ruohonen 2009; Ade-Ibijola 2016a]). CFGs con-
sist of four key components (or tuples) such as G = {N, Σ, P, S} where:

1. N is a set of non-terminals (or lexicon) symbols.

2. Σ is a set of terminal symbols.

3. P is a set of production rules.

4. S is a start symbol, where S∈ N.

Remark. Hence, a language generated by CFG can be repeatedly enumerable by applying
production rules P, by starting with the start symbol S, then replacing the non-terminals N
with the corresponding production rules P until all non-terminalsN have been reached. CFGs
can be rewritten in Backus-Naur form (BNF), also denoted as (::=) as presented below, and
have been applied to many real-world problems [Javed 2009; Huang et al. 2014c]. It is interest-
ing to note that the SQL ISO 2003 uses CFGs for parsing [Schmitz 2007].

Definition 7 (Finite Automaton (FA) or Finite State Machine (FSM) [Kupferman 2018; Genise
et al. 2019; Meduna and Soukup 2017]). A FA or FSM is a 5-tuple where:

1. Q is a finite set of states.

2. Σ is the finite input alphabet.

3. δ : Q x Σ −→ Q is the transition function.

4. s ∈ Q is the start state.

5. F⊆Q is the set of final (accept) state.

A FA consists of several parts, which has a set of states and rules for moving from one state
to another, depending on the input symbol. FAs are drawn with states as circles, start state
indicated by the arrow pointed at it, accept or final states with a double circle and arrows
going from one state to another as the transitions. This is shown in Figure 4.

The finite automaton, M, can be described formally by (Q, Σ, δ, X, Z), where:



2.1 F O R M A L T E R M S 13

X Y Z

a

b a

a,b

b

Figure 4: A finite automaton, M, with three states

1. Q = {X,Y,Z} is a finite set of states.

2. Σ = {a,b} is the finite input alphabet.

3. δ : is the transition function, represented by a transition table:

a b

X X Y

Y Z Y

Z Y Y

4. X ∈ Q is the start state.

5. Z⊆Q is the set of final (accept) state.

Remark. If the set of all strings (A) that the machine (M) accepts, then A is a language of
machine M or L(M) =A. A machine may accept several strings but always recognises only one
language. If no string is accepted by a machine, M, it still recognises an empty, θ, language.

Definition 8 (A General Jumping Finite Automaton or GJFA [Meduna and Zemek 2012;
Křivka and Meduna 2015; Fernau et al. 2015]). A GJFA is a quintuple such that M = (Q, Σ,
R, s, F) where:

1. Q is a finite set of states.

2. Σ is the finite input alphabet.

3. R is the finite set of rules, where py→ q (p,q ∈ Q, y∈Σ).

4. s∈Q is the start state.

5. F⊆Q is the final state.

If all rules py → q ∈ R satisfy | y |6 1, then M is a JFA. Also, L(M) is the language accepted
by the automaton. A JFA is based on a Finite Automaton (FA). In a JFA, the input string is not
read in a left to right manner. That is, if a symbolM is read, it jumps continuously over a pool
of information to an execution point. During computation, a symbol cannot be re-read once it
has been read once.

Remark. As a JFA, M is any string in Σ∗QΣ∗, which represents the binary jumping y. It
satisfies the condition:

vpwy v′qz′⇐⇒ ∃ py→ q ∈ R ∃ z ∈ Σ*: w = yz ∧vz = v′z′.

It is worth noting that a JFA can be used to represent a Context-sensitive Language (CSL)
[Meduna and Zemek 2014; Meduna and Soukup 2017].
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2.2 S Q L C O M P R E H E N S I O N T E R M S

Definition 9 (Cognitive Workload [Miklody et al. 2017]). This is the level of measurable effort
exerted by a brain in multiple cognitive tasks. Cognitive workload is reflected in the level of
brain activity.

Definition 10 (Mental Model [Johnson-Laird 2010; De Boer and Badke-Schaub 2013]). This
is an abstract notion that builds psychological explanations of how something works. Mental
models guide reasoning, behaviour and perception.

Definition 11 (Pedagogical Models [Renaud and Van Biljon 2004]). Pedagogical models (or
pedagogical patterns) aim to find the best way of teaching for the purpose of sharing knowl-
edge. Patterns have been taken up in many fields and each has a particular structure and
vocabulary. For example, the medical science pattern is different from that in software engi-
neering. The pedagogical models consist of:

1. Issues, which involves knowledge transfer of a particular type.

2. Strategy, aimed at transfering knowledge in a particular manner.

3. Implementation, which provides the delivery of content in the way specified by the
strategy.

Definition 12 (Theory of Constructivism [Bruner and others 1966]). This idea suggests that
new ideas can be constructed based upon experiences. The theory shows how humans learn
from their past experiences.

Definition 13 (Learning Theories [Pritchard 2017]). These are sets of principles that explain
how humans acquire, process and retain knowledge. These principles show how learners
progress through the phases of learning.

Definition 14 (Learning Taxonomy [Adams 2015; Sarfraz 2017; Verenna et al. 2018]). This
classification shows the skills that educators set for their students to achieve. The taxonomy
shows the level of cognition required for a course using a set of objectives. An example of
a learning taxonomy is the Bloom’s taxonomy of learning. This taxonomy shows the move-
ment from basic (knowledge recall) to highest (evaluation) level of cognition. Other levels
fall in between, which include comprehension, application, analysis and synthesis. The dif-
ferent taxonomies of learning discussed in this thesis are Bloom’s Taxonomy, Anderson and
Krathwol’s Taxonomy, Gorman’s Taxonomy and the CS Taxonomy.

Definition 15 (Problem-based Learning (PBL) [Hmelo-Silver 2004]). This is an instructional
approach in which students learn from problem solving. In this method, there is no single
correct answer, learners collaborate in groups to identify what is required to solve a problem.

Definition 16 (Pedagogy Style [Renaud and Van Biljon 2004; Mitrovic 2003]). This is the prin-
ciple that shows how a concept should be taught. The SQL pedagogy involves two methods,
using instructor-led and electronic tools.

Definition 17 (Syntax-free Approach (SFA) [Pyott and Sanders 1991; Fincher 1999; Ade-Ibijola
et al. 2014; Ade-Ibijola 2016b]). This approach is based on the principle of teaching novices
how to program without its inherent syntax. The approach suggested that programming
should be taught using clear English terms with the aim of improving program comprehen-
sion.

Definition 18 (Narrations [Ade-Ibijola et al. 2014; Ade-Ibijola 2016b]). Narrations adopted the
SFA approach in an attempt to aid program comprehension. This approach uses a high-level
descriptions of programs written in plain English often longer than programs they describe.
They are also called syntax-free textual algorithms. This approach was employed in this thesis
in an attempt to assist users to understand SQL queries.
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2.3 S Q L C O N C E P T T E R M S

Definition 19 (Relational Model [Codd 1970]). The relational model was developed to model
data in the form of relations (tables).

Definition 20 (Relational Database Management System (RDBMS) [Coronel and Morris
2016]). RDBMS enables users to create and maintain a relational database. Once the rela-
tional database is structured appropriately, it is referred to as normalisation. According to Batra
[2018], we define the following terminologies to better understand the RDBMS concept:

1. Field: This is the smallest unit of information that consists of a column in a table. A field
is also termed an attribute.

2. Record: The record consists of each row in a table. This is also regarded as a tuple.

3. Table or relation: In the relational model, every relation can be depicted as a table but
not every table can be termed as some relation. Hence, a table is a collection of related
data organised within a database.

4. Database: This is an organised collection of related tables and data.

5. Query: This is the composition of a table, presented in the form of a predefined SQL
query.

Definition 21 (Structured Query Language (SQL) [Hogan 2018]). The SQL is a standardised,
de facto language for creating and maintaining a RDBMS. Every RDBMS engine supports
SQL, which has made it the most comprehensive database language. It consists of statements
that support queries, updates and data definitions (DML and DDL). We define these terms as:

1. Data Manipulation Language (DML): The DML consists of commands which are used to
load, update and query a database. These consist of statements such as SELECT, INSERT,
UPDATE and DELETE.

2. Data Definition Language (DDL): The DDL defines commands for table creation, in-
dexes and views. Popular commands in this category are CREATE, ALTER and DROP.

Definition 22 (Simple Queries [Beaulieu 2009]). These are queries that include operations for
selection, mapping, built-in functions and simple Boolean values.

Example 2.3.1. An example of a simple query that displays all information from a Student
table with a WHERE condition as presented in Listing 1.

Listing 1: A simple query

1 SELECT *
2 FROM Student
3 WHERE Name = "Steve";

Definition 23 (Nested Queries [Beaulieu 2009]). Nested queries include grouping, set opera-
tions and relational operators.

Example 2.3.2. A nested query shows nesting properties with multiple SELECT statements
as seen in Listing 2.

Listing 2: A nested query

1 SELECT lastname
2 FROM Student
3 WHERE lastname IN (SELECT lastname
4 FROM records);
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Definition 24 (Query Builders [Ceballos et al. 2012]). Query builders improve the understand-
ing of a query using drag and drop functionality. Typically, a query builder is mostly used to
create queries and filters.

Definition 25 (Intelligent Tutoring Systems (ITSs) [Graesser et al. 2012]). ITSs are learning
platforms that incorporate computational models to provide immediate and comprehensive
feedback to a learner without requiring an instructor. ITSs evolved from Intelligent Computer-
Aided Instruction (ICAI) in 1987 which attempted to produce human-like behaviour [Elsom-
Cook 1987]. Such activities are classified as ’good teaching’.

Definition 26 (End-users vs Student [Connolly and Begg 2005]). The end-users are the cus-
todians of db applications, who maintain and use data from these applications to serve their
information needs. In this work, end-users are classified as:

1. Non-technical end-users. They are typically less knowledgeable of the RDBMS and SQL.
The majority of these users are in diverse fields such as marketing, finance, mining,
etc. Typically, they access their databases through special-purpose applications to speed
up their processing task. For example, QuickBooks1, a popular accounting software, is
mostly used by end-users such as HR managers to carry out payroll tasks.

2. Technical users. Conversely, technical users are familiar with the features offered by the
RDBMS. These users are very knowledgeable in SQL, and can write application pro-
grams to support their routine tasks. Examples of such users are database administra-
tors, web programmers, data scientists, etc.

A student is an individual who is studying towards a degree. A student can be an under-
graduate or a postgraduate. Here, our focus is on undergraduate students as they are studying
SQL for the first time. Students and learners are used interchangeably in this thesis.

Remark. In this thesis, our focus is on these users, namely: non-technical end-users in indus-
try, and undergraduate students in academic institutions. These users are our focus because
they struggle to write and understand SQL queries.

Definition 27 (Cognitive Models [Al-Shuaily 2013]). The cognitive models for SQL involves
learning, understanding and remembering. These models require that learners should accu-
mulate a range of contexts so that their formulation and translation skills are improved.

Figure 5: The cognitive models for learning queries [Al-Shuaily 2013]

Figure 5 shows the cognitive models for query learning. The cognitive models are:

1. Query comprehension is the stage that requires learners’ skills of reading and under-
standing of SQL queries. This task involves reading and identifying the required query.

1 https://quickbooks.intuit.com/
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2. Query formulation is an approach that a learner is required to perform during prob-
lem solving. This approach requires the student to understand the context of the given
problem.

3. Query translation (synthesis) is a stage that requires the learner to express a query in
clear English and write the related SQL query.

4. Query writing is a factor that influences how a learner performs once a scenario is given.
This phase requires that learners apply their knowledge of the SQL syntax for the pro-
vided scenario.

2.4 C O M P U TAT I O N A L L I N G U I S T I C S T E R M S

Definition 28 (Natural Language Processing (NLP) [Nadkarni et al. 2011; Manning et al. 1999]).
This is a branch of computational linguistics that explores how computers understand words
written in human languages. NLP began in the 1950s and has been used in many applications,
such as email-spam detection, text summarisation, question-answering (QA), and machine
translation (MT), etc.

Generally, NLP is classified into Natural Language Understanding (NLU) and Natural Lan-
guage Generation (NLG) [Liddy 2001].

Definition 29 (Natural Language Understanding (NLU) [Sharma et al. 2019]). This concept
helps computers to understand and interpret human languages, in speech forms. Most NLUs
systems are based on statistical models, which are an important branch of NLP.

Definition 30 (Natural Language Generation (NLG) [Staykova 2014]). This process generates
a natural language from non-natural language inputs. NLG is also regarded "translator", and
classified as a sub-field in Computational Linguistics.

Definition 31 (Natural Language Interfaces to Databases (NLIDBs) [Reinaldha and Widagdo
2014; ElSayed 2015; Sharma et al. 2019]). NLIDBs are query interfaces, used to translate a nat-
ural language query (NLQ) in English into a database query. The first known NLIDB system
was LUNAR [Woods 1972], which was developed in the late sixties. Since then, there has been
a continuous development of interfaces to assist end-users write queries.

2.5 O T H E R T E R M S

Definition 32 (Visual Specifications [Rojit et al. 2016]). Visual specifications are symbols used
to represent features, which can be used to display some text or program. In the program-
ming concept, visual specifications have been used to build and demonstrate a programming
solution. Examples of visual specification tools are Scratch [Resnick et al. 2009], Alice [Dann et
al. 2011] and Blockly [Fraser 2015]. These tools are generally called Block-based programming
languages since they use “drag and drop” interactions to build a program. Figure 6 shows an
example of Scratch with annotations describing program blocks.

Definition 33 (Verbal Specifications [Kantorowitz 2014]). Verbal specification is a process that
clearly expresses the terminology of a domain where the subject matter is less understood.
This process involves speech forms. Verbal specifications have been applied in many scenarios
where a concept is less well understood [Kantorowitz 2014; Meziane et al. 2008]. For example,
in programming, to assist students produce programs from speech using an informal elici-
tation to allow users to translate speech into formal Unified Manipulation Language (UML)
diagrams [Meziane et al. 2008].

Definition 34 (Parsing [Straka and Straková 2017]). Parsing is the transformation of a se-
quence of characters into a syntax tree. During parsing, a sequence of characters such as a sen-
tence, are usually grouped into syntactic parts for recognition. For example,"The dog barks"
will be assigned to subject (“The dog”) and predicate (“barks”).
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Figure 6: Example of Scratch showing program blocks [Resnick et al. 2009]

Definition 35 (Stopwords [Saini and Rakholia 2016]). This is a well-established method used
to reduce noisy features in textual data. Stopword is based on the idea that words that are not
relevant may help produce more accurate results for a classifier. This method is widely used
in the NLP domain especially for document classification and information retrieval.

Definition 36 (Stemming [Kotov 2017]). This is the process of reducing words to their base
form, and has been applied to many computational linguistic problems. For example, the
word “going”, would be reduced to “go” through stemming. In this case, the gerund (ing) in
the word is removed from the base/root form.

2.6 C H A P T E R S U M M A RY

In this chapter, we have presented the definition of terms used in this thesis. We started by
defining terms for formal language and its related languages, then we provided definitions for
the SQL comprehension concepts. Next, we defined terms used in the computation linguistic
domain, and other newer terms introduced in this work. Chapter 3 reviews the background
and related work for this study.
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This chapter reviews the literature related to SQL learning and other related approaches.
We start by providing a general overview of SQL and a brief history, then we discuss
the challenges associated with learning SQL. Next, we investigate existing learning

theories and pedagogies. Furthermore, we highlight state-of-the-art tools used for teaching
and learning SQL queries. Last, we discuss recent works in the NLP domain by describing
existing methods and related tools.

3.1 I N T R O D U C T I O N

It is a well established fact that SQL is predominantly used in the industry and taught as
part of an introductory database course in the undergraduate curriculum [Ahadi et al. 2015;
Bider and Rogers 2016; Grillenberger and Brinda 2012]. For an introductory database course,
the basic SQL concepts that students are expected to master are clearly defined [Renaud
and Van Biljon 2004; Mitrovic and Ohlsson 2016]. More so, there are many useful resources
available that are designed to assist students progress from basic to advanced levels of
understanding SQL [Heller 2019c; Bergin et al. 2012]. Many publications have presented
different pedagogical approaches that address the relevant aspects of SQL that need to be
covered by an educator [Renaud and Van Biljon 2004; Lavbič et al. 2017; Coronel and Morris
2016; Prior 2014].

Extensive knowledge of SQL skills is vital for many organisations [Liu et al. 2003]. Many
studies have highlighted that sufficient knowledge of writing correct SQL queries remains
a skill that most CS graduates have not mastered [Sander and Wauer 2019; Liu et al. 2003;
McGill 2008]. A proficiency in SQL is highly sought after by industry employers, and is
required for most entry level jobs in programming [Cappel 2002]. A research study by
Verma et al. [2019] showed that to take up programming roles, an individual must possess
knowledge of SQL. Furthermore, Chiang et al. [2012] opined that a role in business analysis,
data engineering and web development requires extensive knowledge of SQL. Despite the
lingering demand for SQL skills, there is still the question of which specific pedagogy and
learning style is preferred [Sander and Wauer 2019]. It is a well known fact that teaching and
learning are connected processes that help to stimulate a learner [Menekse 2019]. Mayer and
Alexander [2016] assert that learning is a process that connects new information to previous
knowledge, hence it is imperative to assist learners develop their knowledge of a concept.
To support learning, the mode of instruction needs to be designed to facilitate the learning
process. Examples are: web-based presentations, educational games or using specialised
software programs (or ITSs) [Collins and Halverson 2018]. Despite the usefulness of these
instructional materials, students struggle to understand basic and complex SQL queries
[Mitrovic 2012; Cembalo et al. 2011; Chu et al. 2017].

Similarly, non-technical end-users in industry frequently use applications that rely on
databases that store structured data [Sagiroglu and Sinanc 2013; Hashem et al. 2015; de
Silva 2017]. These applications make use of SQL queries to manipulate and retrieve data
from these databases. Wang et al. [2017a] opined that non-technical end-users would like
to access databases and write SQL queries if they had the means to do so. Unfortunately,
only technical specialists can accurately write correct SQL queries that extract useful
information from these data sources [Elder 2009]. As a result, non-technical end-users
must rely on these specialists to generate reports of the query tasks for them. Such an
approach can be time-consuming and laborious for an end-user [Zhang and Sun 2013;
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Yaghmazadeh et al. 2017b; Wang et al. 2017a]. A few questions come to mind, including but
not limited to: What is SQL? Why is it so hard for students and non-technical end-users
to understand SQL queries? What are the main causes of this and how can they be addressed?

This chapter continues by presenting a brief history of SQL in Section 3.2. The challenges
encountered when learning SQL are presented in Section 3.3. The pedagogical approaches
used for SQL are described in Section 3.4. This is followed by cognitive theories of learning
in Section 3.5, and the state-of-the-art tools for SQL are presented in Section 3.6. The NLP
methods and similar areas are presented in Section 3.7. The formal language and automata
applications are discussed in Section 3.8. The gaps noticed in literature that motivated this
research are highlighted in Section 3.9. This chapter concludes with Section 3.10.

3.2 B R I E F H I S T O RY O F S Q L

The idea behind the relational model paved the way for Codd [1970] to release a language
called the Structured English QUEry Language (or SEQUEL) to communicate with relational
databases. SEQUEL was later renamed to SQL because SEQUEL had already been used for
a hardware product [Levene and Loizou 2012; Coronel and Morris 2016]. Since 1986, a joint
effort by the ANSI and ISO adopted SQL as the default language for relational databases
[Barrera and Pachitariu 2018; Heller 2019b]. Since then, SQL has undergone refinements in
1989, 1992, 1999, 2003, and 2006 [Coronel and Morris 2016]. The current version, SQL:2006,
supports the object-oriented functionality, alongside with XML features for querying data,
among other updates to the language. Most database vendors such as IBM, Oracle, Microsoft
and Informix have continuously used SQL for their products. To date, SQL has remained the
preferred language used to communicate with both commercial and open source database
products [Harrison 2015].

Many of SQL statements are “English-like”, and generally are referred to as a declarative
language [de Silva 2017]. The English-like construction indicates that SQL statements are eas-
ier to learn and understand. That is, SQL statements resemble English language sentences
in their formulation. In addition, SQL is widely considered as a non-procedural language by
which its operation is specified (in this context, a result set) rather than a step-by-step com-
putation [Myalapalli and Shiva 2015]. As a result, a database engine decides the tasks and
produces a result. Compared to a procedural language such as Java or C, a program can be
broken into smaller chunks and a compiler can perform the desired computation in a step-by-
step manner. Simply, a user is in control of what the program does. There are two variants of
SQL commands: DDL and DML [Dekeyser et al. 2007]. The DDL commands allow users to
manipulate data in a database, while the DML decides the commands for defining a database
schema.

3.3 C H A L L E N G E S O F L E A R N I N G S Q L

Despite its simple syntax and highly declarative nature, learning SQL and its underlying
concepts pose difficulties for students [Kleiner et al. 2013; Jones et al. 2016] and non-technical
end-users [Li and Jagadish 2016; Soylu et al. 2016]. Several authors have tried to identify
the reasons for the difficulties encountered by these groups of users while learning SQL.
Prior [2003] investigated why students experience difficulties in learning SQL. In this study,
students were asked to submit a formal assignment on a piece of paper without having
to practise against a relational database. The research highlighted that students perform
badly in writing correct queries because most of them are only interested in passing the
module rather than taking time to practise sufficiently. Furthermore, the study concluded
that constructing and writing correct queries in SQL is a practical skill that cannot be gained
without repeated practise. Mitrovic and Ohlsson [2016] opined that learning SQL from a
RDBMS often lead to learning challenges. The authors advised that errors generated from
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most RDBMS are not helpful to learners, because they are limited to the syntax of the RDBMS
itself.

Writing DML and DDL expressions have shown to be problematic for learners [Dekeyser
et al. 2007; Seyed-Abbassi 1993; Qian 2012]. Sadiq et al. [2004] presented two reasons for the
difficulties experienced while learning SQL. First, the straightforward syntax of the SQL
SELECT command is often deceptive. To a learner, it might appear easy to learn, but the
reverse always seems to be the case. Second, the declarative nature of SQL can be difficult for
students to comprehend, especially if they are learning it alongside a procedural or object-
oriented programming language. These difficulties were further discussed by Dekeyser et
al. [2007] and Ahadi et al. [2015]. They argued that approaching programming problems in
procedural or object-oriented programming languages requires learners to think in steps,
while SQL requires one to approach a problem in sets rather than steps.

Another difficulty faced in learning SQL is the burden of memorising database schemas,
resulting in inaccurate solutions due to wrong attributes or table names specified [Mitrovic
2003; Mitrovic and Ohlsson 2016; Lavbič et al. 2017]. This difficulty often misleads the learner
in understanding the underlying concept of SQL. Prior [2014] reported that apart from
the burden of memorising database schemas, knowing when they are necessary in writing
queries and how to execute them poses great difficulties, requiring consistent practice and
effort from learners. Other reasons are that learners misunderstand the use of first-order logic
and other basic concepts of SQL [Grust and Scholl 1999; Ahadi et al. 2015; Soylu et al. 2017].

Kearns et al. [1997] suggested that failing to understand basic SQL queries will lead to
problems comprehending other concepts such as group and aggregation functions, joins,
universal quantification and some set operations. In addition, Ahadi et al. [2015] conducted
a survey and revealed that a high percentage of students struggle to learn and write correct
subqueries (nested and correlated) enclosed in balanced parentheses. The study agreed that
only after students have fully grasped the early stages of learning simpler SQL queries,
can they begin to understand nested queries as these require a procedural understand-
ing of SQL. Also, recent studies by Cagliero et al. [2018] and Taipalus et al. [2018] agreed
that students should first understand simpler SQL queries before being taught nested queries.

Similarly, non-technical end-users struggle to understand SQL queries written by technical
experts [Ardito et al. 2014; Li and Jagadish 2014b]. If a database administrator leaves an
organisation, and the non-technical user is left to use an enterprise application without
proper support and training, this can result in redundant reporting, which contains repetitive
and unwanted data that makes it difficult to use in these environments, since the users do
not understand queries. In most cases, enterprise applications that use SQL as a back-end
are often employed by these users, which are often provided in a software documentation
[Warnke 2009]. These materials may contain terminologies that are difficult to understand
and interpret. If the documentation is not properly designed with non-technical end-users in
mind, this may pose serious difficulties.

The majority of these non-technical end-users work in diverse fields such as marketing,
finance, mining, etc. Many of these users are faced with the challenge of retrieving vital infor-
mation from their databases. In most cases, they can clearly specify the intended task, but lack
the knowledge to write a correct SQL query. Thus, end-users often seek help from technical
users or through online forums [Wang et al. 2017a;b]. Such a process can be time-consuming
and frustrating [Yaghmazadeh et al. 2017a]. In view of these challenges, we discuss the peda-
gogical patterns and learning strategies that have been proposed over the years.
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3.4 P E D A G O G I C A L M O D E L S

Pedagogical models (or pedagogical patterns) and their use in teaching have been widely
researched and debated over the years [Kotzé et al. 2008; Schulte et al. 2010]. Instructors apply
different pedagogical models in their teaching curriculum. The father of patterns, Alexander
[1977], defined patterns as “each pattern described a problem that occurs repeatedly, used to
describe the solution to a problem over a million times”. This quote suggests that patterns
give designers the freedom of problem solving through many variations.

Bergin et al. [2012] describe pedagogical models as the detailed description of work car-
ried out by an educator to communicate knowledge to others and to solve recurrent prob-
lems. Renaud and Van Biljon [2004] added that pedagogical models consist of three forms,
namely: issues, strategies and implementation. The issues refer to the transfer of knowledge.
The strategy aims to transfer knowledge in a particular way and implementation describes
the materials used by the strategy. In a teaching and learning scenario, patterns offer a way of
transferring knowledge. The intent is to capture and present a concept in a compact form to
those that require the knowledge. We present the different pedagogical patterns as discussed
in the literature.

3.4.1 Models in Human-Computer Interaction

The first human-computer interaction (HCI) patterns were based on user-centered system
design with reference to Alexander’s ideas [Borchers 2000]. These patterns were discussed in
the Common Ground [Tidwell 1999], Designing Interfaces [Tidwell 2010] and User Interface
(UI) patterns and techniques [Tidwell 2002]. HCI pattern was defined by Dearden and Finlay
[2006] as a description of a proven solution for a user interface that takes place within
a particular context. HCI patterns are also referred to as UI patterns that assist software
developers to reuse best practices and avoid reinventing the wheel [Seffah 2015]. The study
showed that patterns are applicable to every software system and are widely independent of
the tools that are used to develop those systems.

Borchers and Thomas [2001] discussed that HCI patterns should model design experience
based on the field of architecture where pattern ideas were orginally conceived. The authors
stressed that HCI patterns should focus exclusively on the non-technical end-user to em-
brace their potentials. Using patterns only for an expert user would limit their importance.
Van Welie and Van der Veer [2003] proposed a top-down approach of HCI patterns organisa-
tion into a scale of hierarchy from high-level design problems which are gradually unpacked
into low-level design problems.

3.4.2 Models in Education

Just as patterns are employed in many fields to teach students about certain concepts,
their application in education are numerous [Borrego 2007; Vermunt and Donche 2017;
Hansen and Reich 2015]. Al-Shuaily [2013] described patterns in education as a technique
to help educators transfer their experience in a manner that helps to achieve good teaching
and learning. In this thesis, the author suggested that using patterns in a CS class will
enhance problem solving skills. Educational patterns describe successful practices within an
educational context that includes methods, content and curriculum design [Winthrop and
McGivney 2015].

Laurillard [2013] argued that the current teaching approach is changing and teachers are
required to cope with a technological environment. In addition, the author stressed that teach-
ing should be seen as a creative design profession. Clayer et al. [2013] proposed an engineer-
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ing framework aimed at collecting different pedagogical designs from instructors. The result
showed that the tool allowed instructors to convey their opinion in a self-expressive manner.

3.4.3 Models in SQL

In teaching SQL queries, pedagogical patterns employed either make use of traditional
face-to-face instructor-led teaching [Mao and Brown 2007] or electronic aids [De Raadt et al.
2007; Dollinger 2010]. Prior and Lister [2004] proposed three approaches to teaching SQL. The
first aspect of this approach required that students be graded using a method that would help
improve their learning skills. The idea was that giving students practicals and grading them
would improve their query formulation skills. The second part of this approach considered
improving SQL skills by using real-world software development, while the third process
encourages students to build their SQL query skills by practising online. A similar study was
conducted by Abelló et al. [2008], who encouraged the automatic grading of students which
would enhance and improve their SQL skills.

Another pedagogical pattern for teaching SQL was presented by Renaud and Van Biljon
[2004]. The authors compared and contrasted two approaches to teaching in terms of mental
models and cognition. The first approach exposed students to using tools to learn the SQL
syntaxes, while the second approach required students to formulate queries on paper for
weeks before they are exposed to tools. The results showed that if learners are taught using
a particular paradigm, exposure to other methods would compromise their SQL query
formulation skills. They insist that students need to grasp the basic concept of SQL before
they are exposed to tools. Caldeira [2008] conducted a similar study, which required that
students understand SQL thoroughly, by reading and understanding how to write SQL
scripts, before they are exposed to tools.

Ahadi et al. [2016] presented common semantics that instructors need to consider when
teaching students to write SQL queries. They emphasised that a deeper understanding of
these semantics would improve students’ learning outcomes and proper writing of SQL
queries.

3.5 L E A R N I N G A P P R O A C H E S

The study of how humans learn is not new. As the study of learning continues to expand,
researchers have continually applied their ideas to this concept. Over the past few decades,
learning theorists have engaged in extensive debates on how people learn [Mowrer 1960;
Gredler 1992; Seligman 1970]. Similarly, these theorists agreed that there is no clear definition
of learning that is universally accepted. We provide some of the definitions in the literature.
Lachman [1997] refers to learning as a behavioural change due to experience. De Boer and
Badke-Schaub [2013] defined learning as an activity that involves acquiring and modifying
knowledge, attitude, skills and behaviours.

Schunk [2012] identified three criteria for learning. First, learning involves change – people
learn by doing things differently; second, learning endures over time – those changes are
temporary and may not last forever; and, learning occurs through experience – humans learn
from past experience. De Houwer et al. [2013] argued that not all of these definitions are valid;
a change in behaviour may not necessary imply learning. Furthermore, the study concluded
that a change in behaviour is only caused by some experience in an individual and may not
count as instances of learning. Eberl and Kaiser [2018] retorted that some definitions need to
specify that learning requires changes in a specific psychological mechanism to clearly make
a distinction between a behavioural change and learning.
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The act of learning is an active area of research in psychology, behavioural ecology, neuro-
science, CS and many other disciplines [Barron et al. 2015]. In the CSs, students learn how to
program in the early stages of their academic pursuit [Resnick 2013; Moreno-León and Rob-
les 2016; Hu and Shepherd 2013]. Learning how to code is considered a hot skill and most
industry employers are in dire need of software programmers [Luxton-Reilly et al. 2018]. At
the early stages, most students are introduced to tools to enable them to improve and learn
programming [Moreno-León and Robles 2016]. Even so, students are taught SQL queries in in-
troductory database courses, but learning how to write correct queries is problematic [Ahadi
et al. 2015; Soylu et al. 2017]. It is important to know what modes of learning exist in order to
ensure knowledge impacted by the instructor through instructional materials, is understood
and learned. The next section describes the different learning strategies.

3.5.1 Learning Theories

Learning theories are conceptual frameworks that explain how humans acquire, retain and
recall information [Politis 2008]. An effective instructional design is important to ensure clar-
ity, direction and focus throughout the learning process [McLeod 2003]. Schunk [2012] noted
that learners progress through different learning stages from novice to expert, and most learn-
ing theories share common instructional principles which aid the learner. That is, learning
theories assist instructors in designing instructional contents to facilitate learning. Many edu-
cational psychologists have identified different learning theories that explain how individuals
learn by acquiring and organising knowledge [Politis 2008; Ertmer and Newby 2013; Hung
2001]. According to Hung [2001], the four learning theories are behaviourism, cognitivism,
constructivism and social constructivism.

3.5.1.1 Behaviourism

Behaviourism was the first learning theory developed in the late 1800s and early 1900s [James
2006]. According to behaviourism, the goal is to derive an elementary law of learning and
behaviour that can be extended to more complex scenarios. Davey [2017] described the be-
haviourist theory as a theory based on all behaviours which are acquired through condi-
tioning. Behaviourists believe that conditioning occurs through the environment and our re-
sponses to environmental factors shape our actions [Sheldon 2011; Done and Murphy 2018].
Merriam et al. [2006] highlighted three assumptions of learning used in the behaviourist the-
ory:

1. All behavioural-related tasks have little regard for a learner’s cognition.

2. Learning activity is influenced by environmental factors.

3. Events formation and reinforcement form important components of the learning pro-
cess.

These assumptions imply that learning is based on time-controlled events and environmen-
tal factors which bring about a change in behavioural responses. The strengths and weak-
nesses of the behaviourist theory were identified by Engeström and Sannino [2012] and Omar
[2018]. In their works, the main strengths are that an individual is expected to behave in a cer-
tain way regardless of the circumstance. The weakness of this theory is that the mental cues
that a learner receives may not match what was previously learnt.

3.5.1.2 Cognitivism

Cognitivism is based on the concept that learning is more important than responses to
external factors such as the environment [Duffy and Jonassen 2013; Harasim 2017]. Cogni-
tivism suggests that a reorganisation of experiences could lead to learners making sense of
what they are taught, which can be termed learning [Mayer 2009]. Tobin [2012] argued that
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each learner experiences things by generating their own rules and mental models. Hence,
the adjustment of mental models paves the way for newer experiences. Kalina and Powell
[2009] noted that before instructors can start designing instructional materials, they need
to consider the student’s learning point and allow them to create personal meaning before
knowledge can be passed to them. Modern instructional methods are based on cognitive
theories [Harasim 2017; Kalina and Powell 2009].

The merit of cognitive theories is that learners are trained so that they are able to accomplish
tasks on their own [Omar 2018]. The weakness of this theory as emphasised by Omar [2018]
is that learners are forced to learn and accomplish tasks in a certain way. For example, in
programming, learners can produce different working versions of a program, but some may
be more efficient than others.

3.5.1.3 Constructivism

Pritchard [2017] described constructivism as the idea that learners can construct knowledge
for themselves. Here, each learner constructs meaning as they learn, which is a vital part of the
learning process. Constructivism was formalised by Jean Piaget, who suggested that through
assimilation, knowledge can be constructed from experience [Kalina and Powell 2009]. Since
constructivism describes how learning happens, it is not a particular pedagogy [Hein 1999].
It suggests how learners can use their previous experiences to understand instructional ma-
terials. Constructivist theory also places emphasis on mental processes of the learner. It is
required that a learner utilises different cognitive processes for tasks. Hein [1999] listed some
underlying principles that guide constructivism theory:

1. Learning is an active process that learners can use to construct meaning.

2. Learning involves constructing meaning: people learn to learn as they learn.

3. The action of constructing meaning is mental.

4. Learning is a social activity.

5. Motivation is essential to learning.

A major advantage of this theory is that real-world situations are understood by relating
them to past events [Omar 2018]. Where conformity in thinking and actions are required, this
learning theory may not be the best approach [Omar 2018].

3.5.1.4 Social Constructivism

The theory of social constructivism was developed by Lev Vygotsky in the 1930s and was the
first one to reject the claim made by Piaget [Hirtle 1996; Pass 2007]. Chaiklin [2003] interpreted
Vygotsky’s work to indicate that learning can be separated from its social interactions. Powell
and Wimmer [2015] described the social constructivism theory of learning as an effective
method that involves collaboration and social interaction. This type of learning is based on
social interactions that are developed alongside personal critical thinking in the classroom.
The study concluded that adding this form of learning alongside the constructivist approach
would improve active participation in a classroom.

Social constructivists encourage learners to develop their own version of knowledge by
learning from knowledgeable experts through social interactions [Hein 1999]. This study also
adds that knowledge is distributed in the community and can be built through engagements.
The social constructivist approach assists young children to develop their knowledge by inter-
acting with their immediate peers, adults and the physical world [Hurst et al. 2013]. Hence,
from this viewpoint, learning is acquired and improved as the immediate community helps
shape the knowledge.
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3.5.2 Learning Taxonomies

Learning taxonomies are used to describe different aspects of learning behaviours in the form
of a classification [Horn et al. 2017]. This classification shows the skills that educators set for
their students to achieve [Sarfraz 2017]. The taxonomy shows the level of cognition required
for a course using some set of objectives [Verenna et al. 2018]. Learning taxonomies usually
move from basic to higher levels of cognition. This section presents some different learning
taxonomies.

3.5.2.1 Bloom’s Taxonomy

Bloom’s taxonomy was devised in the 1950s, and was regarded as the stairway of learning
that instructors use to enable students to reach a higher cognitive level [Krathwohl 2002;
Adams 2015]. Since then, Bloom’s taxonomy has stood the test of time [Sarfraz 2017]. The
taxonomy divides the cognitive aspects of learning into six hierarchical levels with increasing
complexity [Starr et al. 2008]. The hierarchy ranges from the highest (analysis, synthesis and
evaluation) to the lowest levels (knowledge, comprehension and application). Each cognitive
level of Bloom’s taxonomy assists the next level. The taxonomy can be used in almost all
disciplines [Sarfraz 2017]. Figure 7 shows the Bloom’s taxonomy of learning.

Figure 7: Bloom’s taxonomy of learning [Adams 2015]

Crowe et al. [2008] applied Bloom’s taxonomy in a biology study to assist instructors in cre-
ating instructional materials and successfully design questions that require students to apply
their cognitive skills. The study showed that Bloom’s taxonomy could help students to be-
come successful biologists as this strategy can improve their learning skills. Thompson et al.
[2008], in their study, identified that many learning theorists believe that it was difficult to ap-
ply Bloom’s taxonomy in introductory programming courses. In addition, the study reiterated
that Bloom’s taxonomy can be a very useful tool for the CSs discipline because it addresses
cognitive processes that programmming courses require. Hence, it can be an invaluable tool
for CS educators.

3.5.2.2 Anderson and Krathwohl Taxonomy

Bloom’s taxonomy was revised to allow educators to understand and implement standards
in their curriculum [Krathwohl and Anderson 2001; Forehand 2010]. This revised taxonomy
is regarded as the Krathwohl and Anderson [2001] taxonomy. The taxonomy maps six well
organised cognitive processes into knowledge levels and takes into consideration many of
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the criticisms levelled against Bloom’s taxonomy.

In comparison with Bloom’s taxonomy, the Anderson and Krathwohl taxonomy is more
comprehensive and has shown to assist instructors in designing instructional materi-
als [Pickard and others 2007]. In its formation, it reword nouns used in Bloom’s taxonomy as
verbs. In this taxonomy, the ‘synthesis’ phase of the Bloom’s taxonomy was replaced with the
‘creating’ phase at the top of the pyramid Thompson et al. [2008]. Similarly, the lowest level
of the Bloom’s taxonomy called ‘knowledge’ was replaced with ‘remembering’. Although
Bloom’s taxonomy is focused on the learning process in many forms, a disadvantage thereof
is that it fails to indicate that learners must start at a lowest level before working up [Churches
2010]. Instead, the learning process can be initiated at any point (context-free), and the learner
can perform the learning task alongside. Figure 8 presents the Anderson and Krathwohl’s
revised taxonomy.

Jansen et al. [2009] suggested that although the Anderson and Krawthwohl taxonomy was
effective in investigating the cognitive learning processes of learners, developing questions
for instructors is not straightforward.

Figure 8: The Anderson and Krathwohl’s revised taxonomy [Wilson 2018]

3.5.2.3 Gorman Taxonomy

Michael Gorman proposed a taxonomy that consists of four simple learning levels [Gorman
2002]. These levels shows how knowledge can be represented, whether implicitly or explicitly.
Figure 9 includes the lower levels information (what) and skills (how) with higher levels of
judgement (when) and wisdom (why). Al-Shuaily and Renaud [2010] compared Bloom’s and
Gorman’s learning taxonomies. The study indicated that the lowest level, ‘what’ aligned with
‘knowledge and comprehension’ in Bloom’s taxonomy. In addition, the higher level word
‘why’ matches with ‘evaluation.

Mohtashami and Scher [2000] noted that teaching the database concept with Gorman’s
strategy would require the first level to cover basic aspects such as entities, relations, etc.
The second level should incorporate concepts such as ERDs1 and SQL. The final level should

1 Entity-Relationship Diagrams
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Figure 9: Gorman’s taxonomy of learning [Gorman 2002]

investigate a problem-based approach to enable students use previous knowledge to tackle
questions for the purpose of understanding the database concept.

3.5.2.4 Computer Science Taxonomy

Many educators have applied different taxonomies to the CS discipline [Maier and Größler
2000; Johnson and Fuller 2006; Rutten et al. 2012]. Johnson and Fuller [2006] carried out a
survey using Bloom’s taxonomy to examine whether it is appropriate for the CS field. The
survey showed that Bloom taxonomy can be helpful for educators developing instructional
materials for their courses. In a similar study, Lahtinen [2007] investigated Bloom’s six
cognitive activities for its use in CS education. The study revealed that the taxonomy was
indeed useful to CS educators. Bower [2008] presented a learning taxonomy that identifies
different programming processes undertaken by students when learning programming.
The taxonomy showed that students are encouraged to focus on tasks that foster memory
retention.

Shneiderman [1978] introduced five learning tasks required for SQL learning. These tasks
showed that learning SQL would require a learner to understand the syntax and semantics
first before modifying queries written by oneself. Renaud and H.A.S. [2009] argued that before
learning SQL, it is important that query construction skills are developed first. The study
recommended Gorman’s taxonomy, where students are required to learn the basic aspects
first, before moving to a higher level.

3.5.3 Learning Styles

As is widely discussed in the literature [Entwistle and Ramsden 2015; Lowe et al. 2016; Adams
2017], individuals have unique ways of learning and processing information. The benefit de-
rived from learning content and materials that match an individual’s learning styles has been
identified in the works of Price [2004] and Fleming et al. [2011]. This has also been identified in
some computer-assisted learning systems [Truong 2016; Sweta and Lal 2016]. The terms ‘cog-
nitive styles’ and ‘learning styles’ are used interchangeably in the literature. Cassidy [2004]
defines an individual’s cognitive style as a problem-solving, thinking, perceiving and remem-
bering activity, while learning style indicates the application of cognitive style in a learning
situation. Soflano et al. [2015] defined learning style as an individual’s choice and strategy for
achieving learning objectives efficiently. In the domain of SQL, different learning approaches
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have been proposed. We discuss the different learning methods, such as PBL, learning from
worked examples, learning through visualisation and learning from errors.

3.5.3.1 Problem-based Learning

PBL is a constructivist2 approach in which learners learn through problem solving [Connolly
and Begg 2006]. In PBL, learning is based on acquiring and processing information that
changes the knowledge previously acquired by a learner. In PBL, learning is achieved using
problems to motivate students and there is a focus on student-centred activities. Using PBL,
instructors act only as facilitators rather than as primary sources of knowledge [Hoic-Bozic
et al. 2009]. PBL is often applied to improve results in collaborative learning where students
work in small groups [Thurley and Dennick 2008; Azer et al. 2013; Chao 2016]. In collaborative
learning, the task of finding the solutions to problems is shared among the group. Figure 10
describes a game-based problem task for a user, where the user has to solve a series of
problems before accomplishing a specific task.

Figure 10: Problem-based task in a gaming scenario domain [Liu et al. 2011]

Kreie and Ernst [2013] explored the use of the PBL approach to improve database learning.
In their study, students were asked to create a logical data model prototype of a database ap-
plication. The prototype would require them to solve some data modelling errors which they
would encounter. The researchers concluded that the PBL approach would challenge students
to understand database concepts and improve their knowledge. Ward [2015] extended the use
of the PBL approach in teaching SQL through a game. The research presented a number of
problem-solving skills for a learner in a typical gaming scenario. The researcher concluded

2 Constructivist - learning based on observation or through a scientific approach
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that using the PBL approach, a learner would have a deeper interaction in solving problems
in SQL.

3.5.3.2 Learning from Worked Examples

According to Sweller [2006], learning from worked examples is the most effective learning
strategy, especially when first learning a new domain. Worked examples are presented to
students, followed by problem-solving techniques. This is done to ensure that they acquire
adequate knowledge before being introduced to problems. Such an approach is ideal for
novices, since examples help reduce cognitive workload and aid initial stage learning
[Van Gog et al. 2011; Renkl 2014]. Najar et al. [2014] proposed the use of learning from worked
examples ITS for teaching SQL. The study concluded that students’ understanding increases
significantly when presented with worked examples. Figure 11 shows an example of a proba-
bility worked example in mathematics, with the colours indicating how the answer is derived.

Figure 11: A worked example in the mathematics domain [Berthold et al. 2009]

Another study of learning from worked examples was presented by Chen et al. [2017a]. The
study showed that in most cases, worked examples contain the right explanations for each
and every step required. This helps novices gain the right information through the examples
provided. The researchers concluded that learning from worked examples is ideal for novices
rather than for advanced students.

3.5.3.3 Learning through Visualisation

Learning through visualisation has proved useful in assisting novices understand a con-
cept [Watson et al. 2011; Garner 2003; Kinchin 2011]. This technique has been used extensively
in different application domains to present ideas [Ellis and Mansmann 2010; Keim et al.
2008]. Ellis and Dix [2007] defined visualisation as a systematic way of representing an
abstract idea that facilitates human understanding. This abstract idea is usually designed
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in a way that is “playful and aesthetically pleasing”, so that users can explore how to solve
tasks. Visualisation can encourage active participation in learning and lead students’ critical
thought processes [Allenstein et al. 2008].

A study conducted by Kellems et al. [2016] showed that visualisation can even help
students with learning disabilities grasp information more easily. Their study showed that
visual aids can also better meet the academic demands of students with autism spectrum
disorder (ASD)3, since they do not require intensive training. A sample visualisation tool is
presented in Figure 12. This example shows how query statements are interconnected.

Figure 12: Sis, a visualisation tool [Garner and Mariani 2015]

In the area of program comprehension, visualisation has been explored to aid the under-
standing of programming [Yassine et al. 2017; Kinchin 2011]. Lee et al. [2013] proposed the use
of the ‘drag and drop’ refactoring visualisation to assist programmers comprehend programs
written in Java. Empirical evidence presented in their work showed that the approach
was more efficient and less error-prone, and that it could help programmers comprehend
programs easily. Studies conducted in block programming (a technique which represents
programs as blocks and uses the drag and drop technique to generate a program) indicated
that this type of visualisation increased student engagement and that it was effective in
knowledge transfer [Malan and Leitner 2007; Rizvi et al. 2011].

A recent study with similar methodology, conducted on serious games, found that this ap-
proach paves the way for undergraduate students to learn programming [Yassine et al. 2017].
The benefit of this visual aid is that it enhances self-pacing, while its entertaining component
attracts the attention of students and engages them in the learning process. It is worth noting
that most SQL comprehension tools employ visualisation to comprehend SQL queries and
database schemas automatically either through textual or graphical representations [Sadiq et
al. 2004; Cembalo et al. 2011; Folland 2016].

3.5.3.4 Learning from Errors

The concept ‘learning from errors’ or LFE has been successfully applied in mathematics
[Brodie 2014], physics [Große and Renkl 2007] and CS (especially in programming) [Shah

3 A neurological and developmental disorder, which result in communication and interaction difficulties.
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et al. 2017]. A recent study by Metcalfe [2017] showed that errorful learning followed by
constructive feedback is a vehicle to achieving purposeful learning. Other research conducted
by Metcalfe and Xu [2017] showed that learning from one’s own errors and those of others is
useful in helping to develop methods to improve students’ learning.

Mitrovic [2012] applied the use of constraint-based modeling in SQL in dealing with errors.
The study identified that fixing errors is a time-consuming process that requires a great deal
of mental effort. Most importantly, people make errors because their procedural knowledge is
poor. The study concluded that if one wants to learn from errors in SQL, one must first accu-
mulate adequate declarative knowledge, which is later converted to procedural knowledge,
a process requiring much practice. Katz and Shmallo [2016] extended LFE to the area of rela-
tional database modelling to examine the difficulties faced by students in understanding con-
ceptual database modelling. The study showed that errors play a powerful role in database
modelling, which encourages students to possess a deeper understanding of the course.

3.5.3.5 Other Learning Styles

While we have discussed only a few learning methods, other learning theories have been
proposed that are used in computer-assisted learning. The learning theories, as discussed in
the work of Soflano et al. [2015] are:

1. Kolb’s learning style, a model developed by Wolfe and Kolb [1984] which is based on
four elements: reflexive observation, concrete evidence, abstract conceptualisation and
active experimentation.

2. The VAK model, a model proposed by Dunn and Dunn [1978], divides students into
groups based on their learning preferences: visual, auditory or tactile.

3. The Big-5 model, an approach by Felicia and Pitt [2009], has five elements: openness,
conscientiousness, extroversion, neuroticism and agreeableness.

4. Honey and Mumford’s model, proposed by Honey et al. [1992], has four elements: ac-
tivists, reflectors, theorists and pragmatists.

5. The Felder-Silverman learning model, developed by Felder et al. [1988], which consists
of four elements: perception, input, processing and organisation.

3.5.4 Cognitive and Mental Models

Cognitive strategies that influence the effectiveness of teaching and learning are useful in edu-
cation [McDougle et al. 2016; Lane 2012]. Hence, cognitive models are representations of how
humans gain knowledge. Gentner and Stevens [2014] described mental models as concepts
used to provide explanations for the purpose of understanding. These concepts may be from
artifacts of technology, environmental factors, or tasks that need to be understood. They are
mainly explanations that describe how novices understand a concept. This section provides
some cognitive and mental models that have been used to support the understanding of SQL,
as well as a number of cognitive theories discussed in the program comprehension domain.

3.5.4.1 SQL Models

Many studies have investigated different cognitive theories used to support the learning of
SQL [Hatami 2017; Schlager and Ogden 1986; Al Shuaily and Renaud 2016a]. SQL learning
cognition, as defined by Robins et al. [2003], is the construction of schemas, which are
organised chunks of related knowledge. The study further shows that learning either builds
new schema or modifies existing schemas. Hence, to build cognitive processing of SQL, a
mental model must be built to modify or construct knowledge in a schema.
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Al-Shuaily [2013] discussed that a complete understanding of SQL requires the novice to
draw up mental models of the syntax and semantic concepts. The author noted that these
concepts must be understood and their usage in a given scenario is very important to build
good mental models of SQL. In addition, the study described four cognitive models for SQL to
improve learning, understanding and remembering. These models are query comprehension,
formulation, translation and writing to accumulate a range of contexts so that learning can
be improved. In an extended study, Al Shuaily and Renaud [2016a] argued that the schemata
approach may not be the preferred solution. The study advised that knowledge of syntax and
semantics is not sufficient to achieve mastery of SQL queries. The study added that a trial and
error approach of solving schema problems may offer better cognitive processes for novices
to achieve mastery of query problems. Figure 13 illustrates both approaches used to show
mental processes and how problem solving is constructed.

Figure 13: The schemata, and trial and error approaches [Al-Shuaily 2013; Al Shuaily and Renaud 2016a]

Mason et al. [2016] proposed a cognitive load theory (CLT) that addresses poor perfor-
mances in an introductory database course, especially in the SQL concept. The study includes
the human CLT model proposed by Sweller [1988] that focuses on long-term and working
memory of knowledge storage as schema. The schema used in the study indicates cognition
rather than database structure description. The study showed that schemas are retrieved
from long-term memory and once they become complex, more information is used to expand
the working memory. The human CLT concept is described in Figure 14.

In recent studies, Reisner [1977] described a study that generates and merges a set of lexical
items and query templates for query generation. The study was followed by Mannino [2001],
who proposed a two step approach that generates a query from problems and database repre-
sentations. In addition, other studies expanded on the work of Mannino [2001] by discussing
three cognitive approaches to the SQL query generation [Siau and Tan 2006; Ogden 1986].
The approaches are query formulation, query translation and query writing. The study con-
cluded that combining these approaches will aid students in solving SQL problems. These
approaches are summarised in Figure 15.

3.5.4.2 Programming Models

We present some of the programming cognitive models, as we take a cue from the SFA intro-
duced by Fincher [1999]. This approach was used in the current research. Program cognitive
models were described as the representation of a program in a developer’s memory [Lemut
et al. 2013; Gulwani et al. 2015; Ade-Ibijola 2016b; Storey 2005]. These theories were used
to form a mental model useful to ensure that programs should be well understood. These
models are described in this section.

Schulte et al. [2010] presented the top-down approach as an assimilation process that
applies knowledge of the program domain and maps this to the code itself. At this stage, the
assimilation process is driven by hypothesis and used to convey some information about
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Figure 14: The CLT memory [Sweller 1988]

Figure 15: Problems to SQL generation [Al Shuaily and Renaud 2016b]

the program (Beacon). The top-down approach was first proposed by Soloway and Ehrlich
[1984] to decompose programs into some levels of abstraction.

Khuziakhmetov and Porchesku [2016] presented the bottom-up program strategies based on
developers reading code first and mentally grouping them. This strategy was referred to as
the chunk model by Pennington [1987] and was used to group programs into a situation (or
data-low) and program (or control-flow) model. Many learning theorists do not agree with
either model (top-down or bottom-up), hence the opportunistic approach was introduced to al-
low the reading of only terms that are necessary in a program [Littman et al. 1986; Storey 2005].

The knowledge-based model, developed by Letovsky [1987], that combined both top-down
and bottom-up approaches. The study described three components: mental model, which
is a memory representation, knowledge that contains plans and goals, and an assimilation
process. The integration of all approaches led to the introduction of the integrated model
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[Von Mayrhauser and Vans 1995]. This model showed that switching between these models
will improve the assimilation process of programmers.

3.6 C O M P R E H E N S I O N A I D S : S TAT E - O F - T H E - A R T T O O L S

In recent decades, tools to aid the comprehension of SQL have been proposed. Most of these
tools employ visualisation to explain how a query interacts with a database, providing inter-
active examples of the basic concepts of SQL. Others offer solutions to problems faced while
learning SQL queries [Brusilovsky et al. 2008; Cembalo et al. 2011; Folland 2016]. In this sec-
tion, we present some of the existing SQL tools from the earliest (that we know of) to the most
recent that have been used in the comprehension of SQL.

3.6.1 SQL Learning Tools

3.6.1.1 eSQL

The eSQL system was proposed by Kearns et al. [1997] as an interactive learning system for
students. It provides a step-by-step account of how a query result is determined, explaining
each query step. For example, when a student writes a simple SQL query, eSQL provides a
step-by-step formation of the resulting table. This ensures that even novices can easily grasp
areas in SQL that are often found confusing. The authors stress that the dynamic stepwise
mechanism provides a clear explanation of the underlying concepts of SQL, specifically
allowing students to visualise the behaviour of query operators, and is far superior to the
traditional pen-and-paper explanation approach.

Although, the eSQL system provides more information to a user with its friendly user in-
terface, it does not provide comprehensive feedback based on the user’s solution, due to the
lack of semantic analysis in its engine.

3.6.1.2 WinRDBI

The WinRDBI system, also known as the Windows Relational DataBase Interpreter, is an ed-
ucational tool that provides students with a friendly user interface to test their knowledge of
SQL, relational algebra, and tuple relational calculus [Dietrich et al. 1997]. The system is ideal
for most introductory courses on database management systems and provides a platform to
get immediate feedback by seeing the answers to the query specified. One major limitation of
WinRDBI is its inability to provide comprehensive feedback, much as with the eSQL system.
Figure 16 presents the WinRDBI system.

3.6.1.3 SQL-Tutor

Mitrovic [1998] developed the SQL-Tutor, as an intelligent teaching system (ITS), for teach-
ing SQL, implemented on SUN workstations. SQL-Tutor focuses on the SQL SELECT
query and uses semantic analysis to provide feedback on query solutions. It is based on
the constraint-based modeling (CBM), an approach focused on identifying and providing
feedback on errors [Mitrovic 2003; Mitrovic and Ohlsson 2016]. An improved version of
SQL-Tutor was introduced by Mitrovic [2003] known as SQLT-Web, it is a web version that
addresses some of the shortcomings of the SQL-Tutor.

3.6.1.4 AsseSQL

AsseSQL was developed by Prior [2003] as an online assessment tool to test students’ SQL
formulation skills. It uses heuristics to evaluate whether a query entered is correct. The system
is based on the SQL SELECT statement, and runs the submitted query on a test database. The
query specified by a user is based on a question asked. AsseSQL compares the output of the
query with the question. The goal of AsseSQL is to provide a deep learning experience for
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Figure 16: The user interface of the WinRDBI system [Dietrich et al. 1997]

students. Although AsseSQL was successful in providing feedback and grading options, it is
vulnerable to SQL injection attacks – an attempt to make unauthorised changes to a database
[Dekeyser et al. 2007]. An improved AsseSQL was introduced by Prior and Lister [2004] to
evaluate users’ perception of the system.

3.6.1.5 SQLator

The SQLator is a web-based interactive tool presented by Sadiq et al. [2004] at the Univer-
sity of Queensland for learning SQL. It uses heuristics as its engine to evaluate the correct-
ness of formulated query. Much like the AsseSQL, it supports assessments and grading to
queries submitted by students, but does not provide suggestions or hints to query formula-
tion. SQLator has three main components, namely: web application – this is used for providing
access to users, engine – implemented as a Microsoft COM4 object for providing query formu-
lation and evaluation, and databases – used for storing user data. Primarily, it supports only the
SQL SELECT statement and judges if a proposed solution in SQL, corresponds to an English
statement.

3.6.1.6 SAVI

SAVI, also known as SQL Advanced Visualisation, was created by Cembalo et al. [2011] as
a system to aid the teaching and understanding of the semantics of SQL. It uses reversible
animations to explain how query operators can transform data from a database. SAVI was
implemented using the Google Web Toolkit framework written in Java, which allows Internet
applications to be executed in any browser. The motive for this system was to help users over-
come problems related to SQL and improve mental visualisation of query concepts. Although

4 Component Object Model
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SAVI is efficient when using tables with a limited number of rows, it performs poorly with
large tables.

3.6.1.7 SiS

SiS is an acronym for SQL in Steps. SiS is an online learning platform which allows students
to learn and build SQL queries in a series of steps [Garner and Mariani 2015]. The goal of SiS
is to improve the way in which users learn the SQL SELECT query by building a series of
steps in the form of graphs. Hence, SiS is focused on the SQL SELECT statement because it
is identified as an area of difficulty for students [Prior 2003; Sadiq et al. 2004; De Raadt et al.
2007].

3.6.1.8 VisQlizer

Folland [2016] proposed VisQlizer as a learning tool to help students create a mental model
of the underlying concepts of SQL. VisQlizer uses animations and decomposition to aid
comprehension. The researcher concluded that visualisation contributes to a better learning
experience for students when coupled with traditional lectures and textbooks.

3.6.1.9 QueryViz

The query visualisation system (or QueryViz) was designed by Danaparamita and Gatter-
bauer [2011]. It reduces the workload needed to understand queries. QueryViz uses visual
constructs to address issues students face with nested queries. As a learning tool, QueryViz
allows novices to intuitively familiarise themselves with the logical patterns behind the SQL
syntax using the visualisation.

3.6.1.10 YASQLT

Yet Another SQL Tutor ( or YASQLT) is an automated assessment tool for SQL developed by
Bider and Rogers [2016] that teaches the introductory aspect of SQL queries to novice students.
YASQLT focuses on the SQL SELECT and CREATE VIEW statements. The goal of YASQLT is
for checking the result of a query and addressing common errors made by novices while
learning SQL. Lastly, the survey conducted with students using YASQLT showed that it was
helpful in aiding their comprehension of SQL queries.

3.6.1.11 OITS

The Oracle Intelligent Tutoring System (OITS) is a tutoring system created by Aldahdooh and
Naser [2017]. OITS automatically generates problems related to SQL queries to be solved by
students. OITS consists of four basic components. These components are: Expert Module –
responsible for identifying errors, Student Module – highlights the problem solving steps,
Tutoring Module – keeps record of the student’s progress, and UI module – integrates multi-
media applications to aid learning. Empirical evaluation was conducted on OITS and the
outcome concluded that the tool was friendly and easy to use.

3.6.1.12 COSETTE

COSETTE is an automated prover for SQL, developed by Chu et al. [2017], that can deter-
mine the semantic equivalence between two SQL queries. The main goal behind COSETTE is
to determine if two SQL queries are semantically equivalent. COSETTE works with the SQL
SELECT statements. In its metric, not all queries are supported. The study suggested that
COSETTE can be used in a variety of real-world applications such as semantic caching, auto-
matic grading and verifying the correctness of RDBMS rewrite rules.
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3.6.2 More Comprehension Aids

In the previous section, we discussed and presented tools for aiding the comprehension of
SQL. However, we cannot discuss all of them comprehensively. Other closely related tools
developed to aid SQL are:

1. SQLify – A SQL teaching and assessment tool, developed by De Raadt et al. [2006], in-
tended to offer a richer learning experience and provide comprehensive feedback to
students.

2. LEARN-SQL – A learning environment for automatic rating of notions of SQL, pre-
sented by Abelló et al. [2008], that allows online assessment and learning in an inter-
active manner.

3. eledSQL – A web-based SQL learning tool proposed by Grillenberger and Brinda [2012],
suitable for teaching SQL queries to novices.

4. SCYTHE – A web-based query-by-example system proposed by Wang et al. [2017a] that
synthesises SQL queries from I/O examples.

5. SQL tester – An online practice aid developed by Kleerekoper and Schofield [2018] for
assisting students to learn SQL queries, and providing immediate feedback.

6. SQL-to-text – A deep learning model using the graph-to-sequence approach proposed
by Xu et al. [2018], which uses a graph encoder to generate SQL query to textual expla-
nation.

7. GeoSQL Journey – A game-based tool designed by Sandoz et al. [2018] to stimulate
student interest and simplify SQL learning.

8. RSQLG – A practice aid proposed by Julavanich et al. [2019], aimed at providing a hands-
on environment to stimulate student’s interest of learning SQL.

In this section, we have presented some SQL comprehension tools. The next section introduces
NLP and its techniques.

3.7 N AT U R A L L A N G U A G E P R O C E S S I N G A N D T E C H N I Q U E S

NLP has been applied in many fields such as CS, linguistics and cognitive science. In the next
sections, we present the history and techniques used in NLP.

3.7.1 Brief History of NLP

NLP originated in the 1940s, just after World War II [Chowdhury 2003; Jackson and Moulinier
2007]. During this period, MT was the first language translation technique. At this time,
people started to realise that a machine can be created to carry out this kind of task automat-
ically. This phase was criticised due to primitive computing resources available [Hutchins
1986; Hutchins and Somers 1992]. This was the era of punch cards and batch processing that
required no suitable higher-level language. The predominant language at this time was the
assembly language, systems developed used dictionary-lookup for word re-ordering in a
target language, which produced poor results [Bateman and Zock 2003]. NLP researchers
realised that this task was more difficult than expected, hence there was a growing need to
improve the theory of language [Lehnert and Ringle 2014]. Bates [1995] discussed that the
first application of NLP was abandoned due to the complexity of getting computers to map
one natural language (NL) into another. Thus, the study showed it was difficult to map one
string to another.
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From the 1950s to the late 1970s, speech and language processing was split into two
paradigms called symbolic and stochastic [Jurafsky 2000]. The symbolic approach led to the
work of Chomsky [1956], who introduced the idea of generative grammars and other formal
methods. These methods were published in a book, Syntactic Structures, in 1957 [Chomsky
and Lightfoot 2002]. In addition, many linguists and computer scientists started developing
parsing algorithms: top-down, bottom-up and then dynamic programming [Roark and
Johnson 1999; Kumar and Kanal 1988]. The development of parsing algorithms led to the
earliest parsing system, which was the Zelig Harris’s Transformation and Discourse Analyst
Project (TDAP) [Heinroth and Minker 2012]. At this point, the linguistic field gained further
insights on how to revive MT.

In 1956, the second aspect of the symbolic paradigm introduced the field of Artificial
Intelligence (AI) [Shanmuganathan 2016; Mira 2008]. This field was based on the logic
theorist perspective and the general problem solver model that created simple NLU systems.
These NLU systems are based on pattern matching and keyword search, that were mostly
used on QA systems. They use a knowledge-based approach that encodes knowledge and
they are capable of producing answers for a provided question. The systems retrieve answers
to questions from a database. Initially, LUNAR [Woods 1978] and SHRDLU [Winograd
1973] were the first NLIDBs that used this approach. The stochastic approach led to the
development of the speech recognition engine, in particular, the Hidden Markov Model
(HMM) began to show positive signs [Juang and Rabiner 1991; Sonnhammer et al. 1998]. This
introduced works on speech recognition and synthesis.

From the 1980s to the late 1990s, NLP systems became accessible, and areas such as
semantic-oriented processing tasks were built on NL systems [Sag et al. 2002; Ng and
Zelle 1997]. By the end of the 1980s, statistical approaches were showing progress, which
complemented some of the significant NLP problems already addressed by the symbolic
approaches [Manning et al. 1999]. It became apparent that the NLP field was expanding. Most
statistical methods such as probabilistic parsing were combined in machine learning to derive
both syntactic rules and their probabilities [Hale 2001]. Even shallow processing methods
such as finite state parsing and surface patterns were used in practical tasks [Grefenstette et
al. 2000; Roche and Schabes 1997]. These methods were extended to dialogue structures in
conversational systems especially in gaming technologies. Similarly, algorithms for discourse
processing, reference resolution, parsing and part-of-speech (PoS) tagging began to incor-
porate probabilistic measures into their methods [Ng and Low 2004; Nieuwland et al. 2007].
There was an increase in the computer memory and speed of processing systems, which
allowed for commercial implementation of subareas of NLP such as speech recognition.
Grammar and spelling algorithms began to apply augmented alternative communica-
tion [Garcia-Molina and Salem 1992; Myers 1998]. All these contributed to the rise of the
Web with needs for language-based information retrieval and extraction methods [Srinivasan
and Brown 2002]. These methods extended to the growth of linguistic resources such as
WordNet [Miller 1995], British National Corpus [Leech 1992] and test tools such as the Penn
Treebank Tagset [Marcus et al. 1994] was developed.

The early 2000s saw the development of the first neural language model proposed by
Yoshua Bengio and his team [Bengio et al. 2003; Bengio and Senécal 2008]. The neural net-
work describes an artificial neural network, an aspect of the deep learning model that moves
data in one direction through hidden nodes and extends this to an output node. More neu-
ral approaches have been developed, and extended to problems related to NLP [Collobert
and Weston 2008; Collobert et al. 2011]. Notably, many computational problems such as word
sense disambiguation, and part-of-speech identification have become standards, which are
used throughout NLP [Warner and Hirschberg 2012; Li et al. 2010]. Currently, popular NLP
powered tools such as Apple’s Siri, Amazon’s Alexa and Google’s Home have been devel-
oped, which are used on most portable devices [Krusche et al. 2018; Kugler 2019].
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3.7.2 Classification of NLP

NLP is a combination of AI and Linguistic methods, and aims to make computers understand
human languages. According to Manning [2014], NLP is classified into NLU and NLG. Jusoh
and Alfawareh [2012] described NLU as a representation that deals with modeling human
reading comprehension tasks which parses and translates inputs according to NL principles.
Typically, this uses NLP algorithms to reduce human speech into structured forms. NLU con-
sists of components such as phonology, morphology, pragmatics, syntax and semantics. Reiter
and Dale [2000] described NLG as a technique where texts are generated from human lan-
guages using computer-accessible data. This process understands texts in natural form such
as English from non-linguistic representation of information [Manning 2014]. These terms are
illustrated in Figure 17. We describe each of these terms.

Figure 17: Classification of NLP [Khurana et al. 2017]

P H O N O L O G Y The field of phonology deals with the study of sounds and how they are used
in languages [Gussenhoven and Jacobs 2017]. Phonology is applied to virtually all lan-
guages, and is predominantly used in the linguistic domain. In the computational disci-
pline, phonology refers to the application of computational techniques to the processing
of phonological information [Bird 2002]. Trask [2004] described that phonology tells us
what sounds are contained within a language and shows what happens if they are com-
bined into words. The study further described that phonology and phonetics are two
sub-disciplines in linguistics and highlighted that speech organs and muscles are in-
volved in the different aspects of a language. The human phonological features differ
with varying frequencies according to their supralaryngeal vocal tract. This is depicted
in Figure 18.

M O R P H O L O G Y The morphology of a language describes how words are put together to
form a grammar [Ritchie et al. 1992]. Words are an essential part of linguistics, and consti-
tute an integral part of mental grammar [Twain 2013]. A native speaker of a language is
expected to know thousands of words. Nordlinger and Sadler [2019] noted that without
words, it will be difficult to convey thoughts through a language or understand others’
thoughts. Hence, a native speaker of English knows how to segment sounds of words
in his or her lexicon. In NLP, morphology is important for lemmatisation and parsing.
They are useful in many applications [Twain 2013; Nguyen et al. 2016]. For example,
morphology has been applied in lexical databases such as WordNet [Miller 1995] and
Arabic Ontology [El-Affendi 2018], and statistical parsing tools such as SPRML [Tsarfaty
et al. 2010] and FUNGuild [Nguyen et al. 2016].
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Figure 18: The human vocal apparatus [Pisanski 2014]

P R A G M AT I C S Pragmatics is a branch of linguistics that deals with how contexts can be con-
verted into meanings through a language [Thomas 2014]. Pragmatics has its roots in
sociology, anthropology and philosophy [Morris 1970]. This study was influenced by
the work of Peirce [1902], who described three systems of signs (semiotics) namely, syn-
tax, semantics and pragmatics. The study defined syntax as the formal relation of signs,
semantics as the relation of signs to what they denote, and identified that pragmatics is
used to describe signs with relations to users and interpreters. Many NLP researchers
discussed that, to produce effective NLP systems, it is important to understand the prag-
matics of a natural language [Cruse 2011; Ward 2016]. Cherpas [1992] stressed that se-
mantics blends well with pragmatic theory, as it enables the recognition of human con-
versations, and how they can manipulate each other. In addition, the history of their
interaction can shape future utterances.

S Y N TA X Covington et al. [1994] described syntax as the set of rules that governs the forma-
tion of words into phrases or sequences of well-formed words (sentences). The goal
of syntax is to relate morphological components to semantic constituents [Chakrabarti
2004; Dale et al. 2000]. In other words, syntax involves word tokens and structure. In
syntactical forms, words combine in a way which mirrors the expected meaning. For ex-
ample, Peter loves Mary might indicate something different from Mary loves John. There is usu-
ally ambiguity involved at the syntatic phase [Manning et al. 2010]. To represent these
forms, syntax trees are usually used to denote the syntactical analysis phase [Van den
Brand et al. 2005; Hewitt and Manning 2019]. In NLP, syntax is regarded as a lower level
stage and involves the following activities [Nadkarni et al. 2011; Room 2019; Gill 2019]:

1. Lemmatisation: This process involves reducing words to their base form, known
as lemma.

2. Morphological Segmentation: This process breaks words into morphemes. For ex-
ample, the English word, “horses” contains two segments (horse) + (s). This is a
word stem and its suffix.

3. Word Segmentation: This is the process of dividing strings in a language into com-
ponent words.

4. Normalisation: This process involves the categorisation of words or tokens into a
standard format.
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5. Stemming: This is the process of reducing words within the same stem to their root
form.

6. PoS Tagging: This is the process of parts of speech identification for each word. For
example, the PoS for “Johannesburg” is a noun.

7. Parsing: This is the grammatical analysis of a given sentence into a syntax tree.

S E M A N T I C S Berant and Liang [2014] define semantics as a concept that conforms to mean-
ing. The process of checking if words form sensible sets of instructions is known as
semantic analysis [Nasukawa and Yi 2003]. At the semantic analysis phase, this process
relates the syntactic structures from granular levels of phrases, clauses to the language
independent meaning [Cambria and White 2014; Sun et al. 2017b]. This has been applied
in many domains such as: Medicine [Pons et al. 2016], Affective Computing [Cambria
2016] and Game theory [Ryan et al. 2015], etc. In NLP, if a language is to be understood
by a computer, it must go through syntactic and semantic analysis phases [Seuren 2017].
The upper level activities of NLP as described by Nadkarni et al. [2011]; Khurana et al.
[2017] are:

1. Named Entity Recognition: This task involves determining the pre-defined cate-
gories of named entities such as names of organisation, persons, locations, etc.

2. Word Sense Disambiguation: This task determines the meaning of an ambiguous
word within a context.

3.7.3 NLP Algorithms

Since the inception of NLP, different algorithms have been described to work with tools in
this field. Duh [2018] describe NLP algorithms as useful in multiple language variations. In
this section, we review the NLP algorithms that have been proposed over the years.

3.7.3.1 Naïve Bayes

Naïve Bayes (NB) algorithm has emerged as one of most efficient and effective text classifica-
tion techniques used for data mining and machine learning tasks [Gao et al. 2018; Li et al. 2018;
Xu 2018]. This classification technique was developed by Thomas Bayes in 1763, hence its
name [Wang et al. 2016]. It was regarded as naïve because it assumes features that are used by
a machine learning model which are independent of each other. Although currently dubbed
as ‘the punching bag’ of newer classifiers by machine learning theorists, it remains widely
used for classification of texts, which is fast and easier to implement [Xu 2018; Mohammed
et al. 2017]. Most spam filters include NB in their commercial and open-source projects.
In addition, it has been applied in many real-world classification problems in medicinal
diagnosis, sentiment analysis, weather predictions, etc [Xu 2018; Wood et al. 2019; Kwon et al.
2019].

Li et al. [2018] described NB as a probabilistic classifier that uses the Bayes theorem which
can substitute logistic regression models, and can also be used to formulate dependency
or independent variables. Furthermore, Bayes theorem is also referred to as a posterior
probability, used for an event [Zhang et al. 2019a].

In a comparative study, Keogh [2006] showed that NB was much faster to train, and in-
sensitive to irrelevant features in data. A major flaw identified in the study showed that
NB assumes independence on more linear features than on non-linear features. Furthermore,
Xu [2018] discussed that the NB’s classical counterparts such as the Hidden Markov Mod-
els (HMMs), Support Vector Machine (SVM) and principal component analysis (PCA) were
much better for text classification compared to the NB.
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3.7.3.2 Support Vector Machine

The SVM is a widely text supervised model proposed by Boser et al. [2003] that has been
applied to numerous real-world problems. SVM belongs to a family of linear classifiers
used for classification and regression tasks [Ben-Hur and Weston 2010]. As a technique, it
is regarded as one of the kernel methods that maximise predictive accuracy while avoiding
over-fit to data [Ben-Hur and Weston 2010]. These method provides two advantages: they
have the ability to generate non-linear boundaries and they allow a classifier to use data
with no obvious fixed space representation. This has been applied in protein synthesis,
Deoxyribonucleic Acid (DNA) sequences and bio-informatics problems [Shawe-Taylor et al.
2004].

One simple rule about SVMs is that they create a line (or a hyperplane) that separates data
into classes, which can be applied to many classification problems [Evgeniou and Pontil
2001; Tang 2013]. Klein [2006b] explained the hyperplane using an illustration. In Figure 19,
the first hyperplane, H1, is indicated as a black circle which incorrectly classifies data points.
The second and third hyperplanes, H2 and H3, correctly classify data points.

Figure 19: Support Vector Machine: Separating Hyperplanes [Klein 2006b]

Auria and Moro [2008] identified the strength and weaknesses of SVM. Notably, SVMs are
good with structured and unstructured data e.g. text, trees and images. One major drawback
of SVM is that it takes longer to train a large dataset. Goldberg and Elhadad [2008] noted that
despite the challenges faced with SVMs, they contribute immensely to solving problems in
the NLP domain.

3.7.3.3 Hidden Markov Model

One of the most popular methods used in machine learning for sequence modelling of
speech and protein is the HMM [Tobon-Mejia et al. 2011]. Since introduced by the Russian
mathematician, Andrey Andreyevich Markov, as the theory of stochastic Markov processes, it
has contributed immensely to solving many real-world problems [Van Kasteren et al. 2010;
Narasimhan et al. 2016; Fu et al. 2016]. Almost all modern speech recognition systems are
based on HMM. Although, its framework has not changed drastically, it has evolved even
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further with more sophisticated features [Gales et al. 2008]. Bahdanau et al. [2016] described
the HMM as a double stochastic model that is based on intrinsic variability of spectral
features and a statistical modeling framework that ensures consistency in detecting spoken
languages. These stochastic processes are characterised by states and transitions probabilities.
The first process, states, are not visible, hence it is considered to be hidden. The second process,
transitions, attempts to produce state-dependent probability distributions [Kouemou and
Dymarski 2011].

Keselj [2009] described the HMM as based on the augmentation of the Markov chain, which
shows the probabilities of sequences of random variables. The study further explained that
for a NLP scenario, HMM shows observed events and hidden event (PoS tags) that are con-
sidered in a probabilistic model. Furthermore, Awad and Khanna [2015] explained that for
given observations, HMM is used to describe the solution to a problem in a state-sequence
determination manner and through model training means.

3.7.3.4 Deep Learning

The era of deep learning methods began in the 20th century after the performance of
traditional learning became less satisfactory to process human information forms in speech
and vision [Ohlsson 2011; Sun et al. 2017a]. The deep learning methods were originated
by Geoffrey Hinton in 2006, when he proposed the Deep Belief Network (DBN), a deep
learning structured architecture [LeCun et al. 2015]. Since the DBN, there have been rapid
developments of other deep learning techniques with significant impacts on information
processing in the medical, engineering, and even the educational fields [Ching et al. 2018;
Lim et al. 2016]. Predominantly, the deep learning methods have contributed immensely to
the NLP [Socher et al. 2012; Deng et al. 2014; Bian et al. 2014], speech recognition [Hinton et al.
2012; Amodei et al. 2016] and computer vision [Kendall and Gal 2017; Voulodimos et al. 2018].
After the DBN network, Artificial Neural Networks (ANNs) became popular and were an
active area of research, utilising neurons to produce real-valued activation. These neurons
receive inputs from external sources, and assign weights and biases during training. Then, it
produces an output. This is illustrated in Figure 20. The diagram shows the input layer in the
leftmost layer, the hidden layer indicates that it is neither an input nor an output medium.
The output is the rightmost layer or output neurons.

Comparable to the ANNs are the Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs). They are comprised of neurons that receive an input and perform
a scaler operation to produce an output [Goodfellow et al. 2016]. CNNs are mostly used for
pattern recognition within images and have recorded major successes [Khosravi et al. 2018;
Sturmfels et al. 2018]. RNNs are popularly used for sequential tasks such as speech and lan-
guage (texts) [Di Persio and Honchar 2016; Goodfellow et al. 2016]. RNNs are powerful net-
works and training them requires backpropagation which exhausts a great deal of compu-
tational power. Together, these neural networks have performed well on various NLP tasks
such as named-entity recognition, MT, phrase detection and language modeling [Manning
2015; Zheng et al. 2013]. One major contributing factor of these neural networks is their ability
to perform tasks without time-intensive engineering processes. This has led to an important
concept in NLP, known as Word Embedding [Weston et al. 2012]. In addition, a survey study
conducted by Këpuska and Bohouta [2017] showed that due to the deep learning method in-
tegrated in the Google Speech recognition engine, it improved its word error rate (WER) from
23% in 2013 to 8% in 2015. The study showed that Google’s speech engine was significantly
better compared to the Microsoft Speech API and Sphinx-4 engine.

3.7.4 Popular NLP Libraries

NLP libraries are mostly used by researchers to extract information from texts [OpenNLP
2011; Manning et al. 2014; Zhang et al. 2019b]. These libraries handle a wide range of NLP
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Figure 20: A neural network [Liu et al. 2017]

tasks such as topic modelling, text classification, sentiment analysis, POS tagging and many
more. In this section, the libraries used for NLP tasks are presented.

3.7.4.1 Apache OpenNLP

The Apache OpenNLP5 was written in Java, as a free, open-source machine learning tool
used for core NLP tasks, such as named entity recognition, parsing, sentence segmentation,
and POS tagging [Baldridge 2005; OpenNLP 2011]. Developers use the OpenNLP interfaces,
provided by means of an API6 to implement these NLP tasks. The OpenNLP library uses
a maximum entropy to build advanced text processing services [Dandapat 2007; Tratz et al.
2007; Bilgin 2019]. The maximum entropy framework is based on the principle of making
assumptions based on constraints imposed on training data, relationships between data
features and expected outcome. In addition, the maximum entropy is used to recognise
different entities such as locations, organisations, dates and persons. The OpenNLP has been
applied to solve many problems in different domains. We describe them in no particular order.

Rodrigues et al. [2018] used the OpenNLP tool for NLP tasks specified in the Portuguese
language. In this study, sentences were split into tokens, which are a combination of words.
These words are further analysed to broaden the result. The study reported that while using
OpenNLP, many tools under-performed in some language constructs within the Portuguese
context. During an analysis of the forum posts on the dark web, Park et al. [2016] applied the
OpenNLP for sentiment scores generation. The study used the OpenNLP tool tokeniser fea-
ture to create an array, which is then used to find all parts-of-speech in each post, and generate
frequencies of each noun in the post. In the biomedical field, Zhang et al. [2019b] developed
a tool called RNA Interactome Scoper (RIscoper) that uses the OpenNLP for sentence seg-

5 https://opennlp.apache.org/
6 Application Programming Interface
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mentation which extracts contents from articles. According to the study, the developed tool
will save time required for drafting of literature reviews and data organisation in databases.
In addition, the study emphasised that the tool would be useful for bioinformaticians and
experimental biologists.

3.7.4.2 Natural Language Toolkit

The Natural Language Toolkit7 (NLTK) provides a set of tools, released under an open-source
licence for performing different NLP tasks [Loper and Bird 2002; Bird et al. 2008; 2009].
NLTK was developed in Python and contains libraries that supports statistical and symbolic
NLP. Python was selected as the implementation language because its syntax and semantics
have good string handling functionality and provide a shallow learning curve [Bird et al.
2008]. This toolkit has comprehensive documentation, including tutorial guides that contain
the processing tasks it supports. Predominantly, NLTK is well suited to users learning or
conducting research in NLP including related areas such as machine learning, cognitive
science and information retrieval [Klein 2006a].

Bird et al. [2009] described that before NLTK was developed, the following goals were kept
in mind. The first goal is simplicity, an intuitive framework that could give users a practical
knowledge of NLP was created. Second, there was a need to ensure consistency with interfaces
that provide a uniform framework. Third, there is a need to provide a structure that allows
new modules to be extensible. Finally, the study showed that some components can be used
independently of other components. Lobur et al. [2011] highlighted the uses of NLTK, which
includes chunk parsing, assignments, as well as advanced tasks such as word sense disam-
biguation and morphological analysis.

3.7.4.3 Stanford CoreNLP

The Stanford CoreNLP8 toolkit is an extensive annotation pipeline framework, developed in
Java, that provides features to most NLP tasks from tokenisation, named-entity recognition
through to coreference and basic dependencies [CoreNLP 2016; Hirschberg and Manning
2015; Angeli et al. 2014]. Manning et al. [2014] described the toolkit as a combination of
multiple components, each with their APIs tied together to function as a custom glue unit (or
code). Before using the engine, raw text is inserted into some annotated object, which then
undergoes various NLP processing tasks and the resulting feedback is provided by means of
an annotated or plain text format. We describe some of the recent works that have extended
the Stanford CoreNLP into other languages.

For recognising lexicons within the Chinese language, Peng et al. [2015] developed a tool
called CONCRETE, an NLP pipeline built on a number of open-source tools. This pipeline ex-
tended the CoreNLP framework to recognise Chinese language within a broader context. The
pipeline supported word segmentation, named entity recognition, parsing and PoS tagging.
Bondielli et al. [2018] developed an extension of the Stanford CoreNLP toolkit based on the
Universal Dependency (UD) framework into a tool, called the CoreNLP-it. This tool was
developed for the recognition of the Italian language as a set of customisable classes. This
study reported that the tool was UD compliant, catered for multi-word token representation
and provided an extensible framework to support other languages. Andreeva et al. [2018] ex-
tended the CoreNLP toolkit to recognise texts in the Russian language. This tool was able to
determine parts of speech in the Russian language and this proved effective in this context.

7 http://www.nltk.org/
8 https://stanfordnlp.github.io/CoreNLP/
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3.7.4.4 spaCy

The spaCy9 NLP engine was developed as an open-source Python toolkit, designed to work
on large-scale commercial information extraction tasks [Al Omran and Treude 2017; Bock-
lisch et al. 2017; Srinivasa-Desikan 2018]. The current version, spaCy v2.x, was developed
in Python/Cython in 2017, which possesses an accuracy of 92.6%, making it the fastest
syntactic parser in the world. Till now, spaCy is the fastest NLP toolkit in the world with
regards to language processing tasks, especially when compared to NLP libraries that have
been developed [Al Omran and Treude 2017]. spaCy supports almost all NLP tasks from
dependency parsing, tokenisation to POS tagging, and it works well with most deep learning
libraries such as scikit-learn, TensorFlow, PyTorch [Jangid et al. 2018; Goyal et al. 2018]. We
describe recent works that have applied the spaCy toolkit to their tools for various NLP tasks.

Bocklisch et al. [2017] built a tool called Rasa, an open-source Python framework, used to
build conversational systems using the spaCy toolkit for NLP tasks. For NLU tasks, the spaCy
toolkit was used to perform tokenisation and POS tagging. Kejriwal et al. [2017] extended the
use of the spaCy framework into an open-source tool called FlagIt, a system for mining
problems in the sex trafficking domain. The system has been integrated into a domain-specific
search platform used by over 200 law enforcement agencies to minimise the problem of hu-
man trafficking. The study noted that spaCy was effective in the inherent complex NLP tasks
used by FlagIt. In a study on grammatical error corrections, Náplava and Straka [2019] de-
veloped a tool called the CUNI system that applies restricted, unrestricted and low-resource
tracks trained using the Wikipedia source to resolve errors in a sentence. CUNI applied spaCy
to correctly tokenise sentences. The study showed that spaCy was effective in this task.

3.7.5 Applications of NLP

NLP is one of the most important technologies of the current information age [Klein et al. 2017;
Nakazawa et al. 2006; Jurafsky and Manning 2012]. As humans communicate their thoughts in
a language, this has paved the way for numerous applications of NLP: language translation,
web search, advertisements, spam detection, text categorisation, and QA. In this section, a few
NLP application areas are discussed.

3.7.5.1 Machine Translation

Sokolov et al. [2016] described MT as an important application area of NLP that deals
with the automatic translation of speech or text from one human language into another.
Hirschberg and Manning [2015] emphasised that MT is the most substantial way in which
computers could facilitate human to human communication. MT is rated as the most difficult
field in NLP, because it relates to human lives, and as such, it had become a million dollar
affair [Alsohybe et al. 2017].

Over the past decades, MT has been an active area of research for linguists, computer
scientists and engineers [Klein et al. 2017; Nakazawa et al. 2006; Costa-Jussa and Fonollosa
2016]. It is interesting to note that the first of numerous applications of computers was
the MT. This was studied intensively in the late 1950s [Hirschberg and Manning 2015].
This era saw the development of the Statistical Machine Translation (SMT) and Rule-based
Machine Translation (RMT). In the early 1990s, the MT field was transformed at the bilingual
Canadian Parliament proceedings when there was parallel text translation of English and
French sentences [Jurafsky and Manning 2012]. Since then, there has been improvement in
language translation in the MT field, and currently, the field is in a state of flux with hybrid

9 https://spacy.io/
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solutions, falling short of precision and accuracy of human translators [Dale 2019].

Koehn et al. [2007] presented an open-source toolkit called Moses for SMT that consists
of components for data preprocessing, language model training and result translation. This
toolkit integrates well with NLP/speech processing tools with varying confidence in a consis-
tent and flexible framework. The study concluded that Moses will be of immense value to the
MT community. The advancement of the deep neural network has paved the way for Neural
Machine Translation (NMT), which is a recently proposed approach to the MT field [Koehn
and Knowles 2017; Artetxe et al. 2017; Zoph et al. 2016]. Unlike the SMT approach, NMT builds
on a single neural network that maximises translation performance. In addition, the SMT field
is problematic because most translation systems are specifically trained within a particular
domain [Farajian et al. 2017]. Thus, it might perform poorly in a different domain. With the
introduction of NMT, state-of-the-art systems perform better in English-French translation
tasks [Bahdanau et al. 2014].

3.7.5.2 Question Answering

QA is an active area of research and a specialised type of information retrieval (IR) or
information extraction (IE) aimed at returning answers to queries presented in the form of a
natural language [Ong et al. 2009; Belinkov et al. 2015; Cantador et al. 2011]. Athenikos and
Han [2010] discussed that the next generation of search engines will utilise the capabilities
of QA. The history of QA systems dates back to the late 1960s and early 1970s when a major
surge of research activities was seen within the IR/IE community [Athenikos and Han 2010].
In 1999, this surge led to the establishment of the QA Track in the famous Text REtrieval
Conference evaluations [Voorhees and Harman 1999]. Since then, a number of techniques
has been developed for answer generation for three questions types such as list, factoid and
definitions [Athenikos and Han 2010]. To support QA systems, numerous large datasets have
been developed over the years. These datasets consist of questions posed by crowdworkers10

that are used to train QA systems, where the answer is a segment of text within the content.
Examples are SQuAD [Rajpurkar et al. 2016], HotpotQA [Yang et al. 2018], DAWQAS [Ismail and
Homsi 2018], 30M Factoid questions [Serban et al. 2016b] and many others.

Generally, QA systems consist of three processing methods, namely: question, documents
and answering phases [Hirschman and Gaizauskas 2001]. They are built with semantic knowl-
edge throughout the QA process, in order to derive correct answers to questions. The seman-
tic information is obtained from questions and ontological resources may be used to improve
the performance of the QA system. According to a review study by Athenikos and Han [2010],
QAs were classified into semantic-based QA systems, inference-based, and logic-based. The
study concluded that QA systems will continue to grow and help users better utilise the evolv-
ing nature of information.

3.7.5.3 Spam Detection

There is a no single, accepted definition of spam, although this problem has gained promi-
nence since the 1990s [Van Wanrooij and Pras 2010; Chandra and Suaib 2014; Hayati et al.
2010]. Iedemska et al. [2014] described spamming as an activity perpetuated by cybercrimi-
nals, which is used to generate income to the tune of millions of dollars. Conversely, spam
may contain unsolicited advertising contents [Broadhurst and Trivedi 2018]. Spamming
activities are conducted using platforms such as websites reviews [Lin et al. 2014; Ghai et
al. 2019; Saini et al. 2019], social media [Barber et al. 2018; Sharaff et al. 2016], opinion min-
ing [Rayana and Akoglu 2015; Chen and Chen 2015] and email [Idris et al. 2015; Seyyedi and

10 a method that involves volunteers to accomplish a specific task
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Minaei-Bidgoli 2018] to swindle users. Email spamming appears the most popular amongst
these activities [Christina et al. 2010]. This reduces human productivity, wastes bandwidth
and storage, and has exceeded legitimate emails which are sent over the Internet [Shue et al.
2009].

Over the past few years, numerous studies have been proposed to detect spam. We
present the recent studies in no particular order. Using NLP algorithms, Ezpeleta et al. [2016]
proposed the use of the Bayesian filtering classifier to detect unsolicited emails, which are
major threats affecting millions of users per day. The research achieved an accuracy of
99.21% exceeding those proposed by machine learning algorithms. Similarly, Maguluri et
al. [2019] extended the use of Bayesian classification to email spam detection. The study
categorised email messages as either spam or non-spam and noted that spam could be an
enormous problem for private and public organisations. Classification techniques such as
SVM and Deep Neural Networks have also proved effective to efficiently identify spam in
emails [Torabi et al. 2015; Schölkopf et al. 2002; Agarwal and Kumar 2016].

Kumaresan and Palanisamy [2017] applied the SVM technique to detect spam emails, show-
ing a better accuracy over other techniques due to the small data size. The study reported an
accuracy of 97.235% when compared with an existing approach. Roy et al. [2019] extended the
deep networks using CNN and the Long Short Term Memory (LSTM) to detect spam in a so-
cial network such as Twitter. The study incorporated semantic databases such as WordNet and
ConceptNet to improve semantic information representation. Furthermore, this improved the
accuracy and F1-score of the result.

3.7.5.4 Dialogue Systems

Recent advances in NLP have led to multiple applications of dialogue systems, which have
significantly eased tasks in medicine, online shopping, technical support, etc [Deng et al.
2013; Serban et al. 2016a; Bowden et al. 2019]. These dialogue systems provide either speech
or type-written features, or both [McTear 2002; Glas et al. 2012]. Speech dialogue systems are
interactive platforms used by humans to communicate with a computer with the intention of
achieving a specific objective [Serban et al. 2016a]. For example, a user may request all hotels
that are based in a particular location from a chatbot11. The chatbot takes the request and
provides immediate feedback to the user. With the growing rate of AI, numerous companies
are beginning to design powerful goal-oriented spoken dialogue systems. Examples of such
spoken dialogue systems are Google’s Assistant, Apple’s Siri, Amazon’s Alexa and Mi-
crosoft’s Cortana [López et al. 2017; Hoy 2018]. Chen et al. [2017b] described the components
required of any speech dialogue system. These components are automatic speech recognition
for recognition of human speech into text, NLU framed into speech identification, dialogue
management using backend providers and NLG for generating texts based on some linguistic
methods.

Nowadays, a number of NLP libraries have been developed, which are used by dialogue
systems for communication. Examples of these libraries are OpenDial [Lison and Kennington
2016], AllenNLP [Gardner et al. 2018], ParlAI [Miller et al. 2017]. General frameworks such as
Stanford CoreNLP and spaCy have been used for the development of dialogue systems [Burt-
sev et al. 2018; Li et al. 2016].

The origin of dialogue systems can be found in tools such as ELIZA [Weizenbaum and
others 1966] designed to allow humans to interact with computers in free-forms, specified in
natural language. Similarly, other tools such as Parry [Colby 1975] and Alice [Wallace 2009]

11 an AI-powered system designed to simulate conversation with human users
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were developed to allow users interact in a conversational manner. Although these tools were
able to perform tasks seamlessly, they were not intelligent enough and lacked the ability to
keeping conversations evenly [Shum et al. 2018]. Hence, they only work well in constrained
environments. Since then, many researchers have developed smart solutions on dialogue sys-
tems that can handle complex tasks. Huang et al. [2015] developed a spoken dialogue system
called Guardian that significantly can improve interaction in a cost-effective manner. The
tool combines expert and non-expert processes that uses a Web API to scale up interactions,
and can be embedded in other dialogue systems through its API features. Similarly, a tool
called LS-SDS was developed by Papangelis et al. [2017] as an advanced, complex, interac-
tive interface that leverages on Linked Data to improve the linking of entities to user’s input
and data sources. Goel et al. [2019] proposed a hybrid approach that uses a trainable neural
network coupled with a NLU and dialogue tracking to achieve a high accuracy. This hybrid
approach helps to facilitate interaction between a user and a computer system.

3.7.5.5 Text Categorisation

In the data-intensive application fields such as banking, universities and funding agen-
cies, unstructured data remains a serious problem [Tang et al. 2016; Selvi et al. 2017]. One
way of tackling this problem is to present the data in a format that can be used in these
fields [Al-Radaideh and Al-Abrat 2019]. This process is regarded as text categorisation (or
text classification). Dumais et al. [1998] described text categorisation as an application of NLP,
that deals with the assignment of natural language texts to one or more categories based on
their linguistic contents. Sebastiani [2005] explained that text categorisation involves the task
of automatically sorting document sets into a set of categories. This area of NLP has received
prominence in the last 10 years, and many researchers and software developers are deploying
applications using this approach. There are well-known text classification methods such
as language detection, sentiment analysis and topic labeling [Stein et al. 2019; Huang et al.
2014a; Chaturvedi et al. 2018]. These methods have been used to solve numerous real-world
problems.

For a classification of web page content, Qi and Davison [2009] described state-of-the-art
practices as essential to many tasks such as information retrieval, web directory maintenance
and data crawling. The study showed that classification can improve web search quality. The
four classification techniques as described in Figure 21, show how they can used to resolve
search engine spams and improve search results in websites. For clinical data classification
problem, Bui and Zeng-Treitler [2014] used the regular expression approach alongside the
SVM classifier for text classification of clinical datasets. The study reported that using these
two classifiers improved clinical text classification performance and showed that this hybrid
approach was significantly better than using the SVM classifier alone. Hughes et al. [2017]
presented an approach for the classification of clinical text at the sentence level. The method
used the CNN approach to train the health information dataset and indicated that the ap-
proach superseded previous approaches that have been developed by about 15%. In a similar
approach, Chen et al. [2017b] used a CNN model to classify radiology reports with accuracy
reaching 99%. The study reported that this approach may be used for large-scale applications
by annotating texts in medical imaging reports.

3.7.6 Classification of Natural Language Interfaces to Databases

Mony et al. [2014] described NLIDBs as systems which provide easy access to databases using
a natural language, without requiring a user to write in a query languages such as SQL, Prolog
and Lisp. These systems are mostly used by non-technical end-users in fields such as banking,
medical, engineering, mining, etc [Yuan et al. 2019; Gantayat et al. 2019; Kapetanios 2008]. To
use NLIDBs, Wudaru et al. [2019] emphasised that users are required to communicate with
these systems in a natural language such as English. Other languages specified in Arabic [El-
Sayed 2015] and French [Etzioni and Kautz 2002] have been proposed in the past. The develop-
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Figure 21: Text classification methods for web documents [Qi and Davison 2009]

ment of NLIDB systems started in the 1960s [Nihalani et al. 2011; Sujatha et al. 2012]. Initially,
tools such as BASEBALL [Green Jr et al. 1961] were developed using the baseball league played
in the US as a test case. BASEBALL provided answers related to location, dates, etc. This was
followed by LUNAR [Woods 1973], a NLIDB system that was developed from the Apollo lu-
nar exploration that provided information about soil samples. Other systems that followed
were RENDEZVOUS [Codd 1974], LADDER [Sacerdoti 1977] and Chat-80 [Warren and Pereira
1982]. All these systems produced good results, but had a limited repository of information
related to other domains [Mishra and Jain 2016; Papantoniou and Tzitzikas 2019]. Similarly,
these systems used hard-wired knowledge and were dependent upon a limited application
area, which was a major disadvantage. This has been improved by newer NLIDBs that cater
for domain independence and multiple different databases. NLIDBs are classified into differ-
ent categories. These categories show the knowledge-base used by NLIDBs generate answers
to natural language questions [Affolter et al. 2019; Pazos R et al. 2013]. This section presents
these categories of NLIDBs.

3.7.6.1 Keyword-based

The goal of keyword-based systems is to match keywords against a meta-data [Shah et al.
2013]. In this approach, the systems attempt to retrieve keywords from an input sentence and
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convert the equivalent into SQL queries. The following are some of the recent keyword-based
tools:

S I N A Shekarpour et al. [2015] developed SINA as an online, scalable keyword search sys-
tem used for transforming natural language questions into SPARQL Protocol and RDF
Query Language (SPARQL) queries. In its engine, it uses the HMM to establish the most
likely NLQ from different datasets. To reduce questions into keywords, SINA uses the
tokenisation, lemmatisation and stop word removal methods, which are segmented and
processed, before the generated SPARQL query is displayed to the user. A major weak-
ness of SINA is that it reduces the number of answerable questions because it translates
only to conjunctive SPARQL queries.

A Q Q U A template-based system called Aqqu was proposed by Bast and Haussmann [2015]
that uses keywords to translate natural language questions to their matching SPARQL
query. The tool uses POS-tagging for entity matching, generates the set of sequences of
words, computes the list of all entities from the knowledge base and provide scores for
each of the entities matched. Aqqu’s strength lies in the identification of relationships
between entities.

D E E P E Y E The DeepEye tool was created by Qin et al. [2018] that attempts to use keywords to
create visualisations from user’s queries in natural language. The idea behind this tool
is to use a keyword query and a dataset, to generate all possible visualisation. The study
described the framework of DeepEye and explained that it crawls, stores and provides
good visualisation from multiple different sources.

S PAT I A L N L I Li et al. [2019] presented a NLI tool called SpatialNLI that translates a natural
language question into a structured SQL query that is executable by a DBMS. This tool
learns from the keywords of the spatial comprehension model that takes a NLQ and
captures the spatial-specific semantics of it. In addition, the tool uses a sequence-to-
sequence approach, which is a deep learning concept to capture semantic meaning of a
question. The accuracy reported by the tool indicates 90.7%. The authors claimed that
SpatialNLI outperforms other popular state-of-the-art methods.

3.7.6.2 Pattern-based

The pattern-based systems are an extension of the keyword-based approach [Affolter et al.
2019]. This approach answers more complex questions and uses patterns to generate SQL
queries from a natural language. Some of the pattern-based NLIDB systems are:

D B PA L Utama et al. [2018] developed DBPal as a novel data exploration tool that leverages
advances in the deep model to provide a robust platform. This platform uses a pattern-
based, deep learning model to translate NLQ into SQL queries. The tool attempts to sup-
port users in phrasing questions without knowing query features and database schema.
DBPal uses the Paraphrase Database (PPDB) database that contains millions of para-
phrases specified in 16 languages and uses this as an index that maps words to para-
phrases for any given NL query.

N L Q / A The NLQ/A tool was designed as an NLI interface to query a knowledge graph
[Zheng et al. 2017]. This tool was developed for end-users struggling to understand
query languages such as SPARQL and SQL. In addition, it conducted experiments over
the QALD dataset and showed that the approach was effective as it surpasses previous
state-of-the-art tools with regards to recall and precision.

F A N D A The FANDA was developed by Liu et al. [2019] as a NLI that uses a FollowUp dataset
to generate a SQL query. The tool was targeted for novices struggling with SQL query,
and intends to allow them write their request in a free-form specified in a natural lan-
guage. FANDA employs a ranking approach specified in sentence patterns with a weakly
supervised learning method to transfer across multiple different domains.
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3.7.6.3 Parsing-based

In parsing-based systems, the tools parse the input natural language question and use the in-
formation structure to generate a query [Affolter et al. 2019]. In most cases, they use a depen-
dency parser to handle any glitches. These systems use more advanced heuristics compared
to the keyword-based and pattern-based approaches.

AT H E N A Saha et al. [2016] developed an ontolog-driven system called ATHENA that enables
users to write queries in natural language, which is then translated into a SQL query.
ATHENA uses a two-stage approach where the input NLQ is first translated into an
ontology, which is then translated into SQL. With ATHENA, the user is not expected to
know how to write a query language such as SQL. The study concluded that ATHENA
was used on three different open-source databases, and attained an impressive precision
over them.

N A L I R The NALIR system translates a correct English language sentence into a SQL query
and evaluates the query against a RDBMS [Li and Jagadish 2014b]. The system consists
of three parts: dependency parser for understanding the NL query linguistically, parse
tree node mapper for node identification in the parse tree, and an interactive communi-
cator that explains how the queries are to be processed.

B I O S M A RT Jamil [2017] presented the BioSmart tool that uses a syntactic classification that
computes natural language sentence into several classes that fits into predefined syntac-
tic templates, which is then interpreted to generate a SQL query. The generative process
takes a natural language sentence by its NLP interface and maps this into a predefined
sentence or query template. Next, the query mapper transforms the query into a logical
query for the structural ontology which identifies the table, analysis tool and generates
the query.

B E L A The BELA tool was designed by Walter et al. [2012] as a QA system that processes nat-
ural language questions over linked data to generate a SPARQL query. Similarly, this
parses the natural language questions and produces a set of query templates before
generating the query. When compared to other systems, BELA attempts to reduce com-
putation time and increases its user-friendliness for end-users to write correct SPARQL
queries easily.

M A N A L A Giordani [2008] developed MaNaLa as a novel approach that exploits database
meta-data and semantically maps natural language into SQL. The study showed that
MaNaLa uses a machine learning algorithm that maps a dataset of natural language
questions and SQL queries by their syntactic structures.

3.7.6.4 Grammar-based

Grammar-based systems use a set of rules represented as grammar that defines how the nat-
ural language questions can be used to generate a SQL query[Affolter et al. 2019; Song et al.
2015]. This supports end-users who are less knowledgeable about SQL to enable them to write
correct queries. This section highlights a few grammar-based systems.

A S K N O W Dubey et al. [2016] developed the Asknow system where users can write their
queries in English to a target database engine. The questions are first normalised into
syntactic forms, before they are translated into SPARQL queries. In addition, the system
is sufficiently adapted to query paraphrasing that enables it to use its grammar for the
normalisation of a query which follows a syntactic process.
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G F M E D The GFMed NLI system was proposed by Marginean [2017] for biomedical linked
data that applies a grammatical framework (GF)12 that translates natural language
queries into SPARQL queries. To generate natural language into SPARQL, GFMed uses
GF for syntactic and morphological processes and aggregates the path before using RE
operators for recognition. The study highlighted that GFMed can cater for a separate
language apart from English for users to ask questions.

S Q L I Z E R Yaghmazadeh et al. [2017a] presented SQLizer that uses a CFG for semantic
parsing of natural language questions into SQL queries. SQLizer is an end-to-end
system, which is fully automated to work with any database without needing addi-
tional customisation from the end-user. Due to natural language ambiguities, SQLizer
adopts type-directed synthesis and repair techniques to generate a query, which is fully
automated and non-database agnostic. In addition, SQLizer performed better when
compared to the SQLizer system during an evaluation with three databases such as
MAS [Sinha et al. 2015], IMDB [Lu et al. 2012] and YELP [Huang et al. 2014b]. Similarly,
these datasets were used to evaluate NALIR [Li and Jagadish 2014a].

L N 2 S Q L The ln2SQL tool was initially designed for another engine called fr2SQL to con-
vert natural language in French into SQL [Couderc and Ferrero 2015]. In addition, this
Python-based tool considers only the SELECT query command to alter a database using
the French language. To parse the NL, ln2SQL uses a treetagger according to the Parts
of Speech (PoS) tagging approach to filter words in a sentence. This treetagger is based
on the spaCy NLP framework. The filtered words are then extracted and mapped into
keywords which are used to generate a query. The generated query is used to retrieve
rows from a table in a database. The study showed that ln2SQL can be used to support
multiple databases.

3.7.6.5 Speech-based

Recently, speech-based NLIDBs have been introduced to ease conversations between humans
and db applications without needing to typeset a request in natural language [Serban et al.
2016a]. A popular example is the Microsoft’s Cortana [López et al. 2017; Hoy 2018] In this
section, we present a few of these tools.

E C H O Q U E R Y Lyons et al. [2016] built EchoQuery as a conversational system that uses
speech commands to query a database system. The study concluded that EchoQuery
was easy and flexible to use. Furthermore, the study was evaluated in Utama et al.
[2017]. The evaluation was conducted using two baselines, such as template-based and
rule-based approach to map a semantic tree to a SQL. The result of the evaluation
showed that EchoQuery performed at more accurately when compared with two ex-
isiting NLIDBs.

S P E A K Q L Chandarana et al. [2017] presented an end-to-end speech driven interface used
to convert NL into SQL queries. The authors combined four approaches to build the
SpeakQL engine. The first of these processes was a state-of-the-art Automated Speech
Recognition (ASR) technology that processes spoken SQL query into a transcribed out-
put. Second, a transcribed output is processed to obtain a syntactically correct SQL state-
ment that considers keywords, characters and literals using a CFG. Third, the literals
are mapped to attribute names and values, then, a visual output is presented to the user.
The study concluded that SpeakQL is friendlier, more interactive and significantly faster
than other NLIDBs.

12 https://www.grammaticalframework.org/
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C Y R U S Godinez and Jamil [2018] developed a mobile speech assistant for the iOS13 platform
that supports large query classes on a test database. To parse a natural language into
SQL, Cyrus uses a speech recogniser to convert a user’s speech into text transcription.
Also, it uses a linguistic tagger to parse the texts. In addition, it allows students to choose
a sample database, perform operations on this database, and produce a result. The study
showed that Cyrus was able to map simple NL statements into SQL successfully, and
plans to improve its engine to accommodate complex queries.

3.8 F O R M A L L A N G U A G E A N D A U T O M ATA A P P L I C AT I O N S

In this section, we present some of the applications of FLA. First, we highlight some tools that
have used REs, then we discuss CFG applications, and finally, we highlight a number of JFA
applications.

3.8.1 REs Applications

This section contains some of the tools that have used REs.

I N F O R M AT I O N R E T R I E VA L Li et al. [2008] used REs for an algorithm called ReLIE to re-
trieve specific information from a corpus. The study compared ReLIE with a machine-
learning extractor known as Conditional Random Field (CRF) algorithm. The study
showed that ReLIE was more effective at extraction tasks compared to its counterparts.

C L I N I C A L A P P L I C AT I O N S A software tool by Turchin et al. [2006] was designed to identify
and extract blood pressure values from clinical records. The study concluded that REs
provide an alternative approach for abstracting data elements in multiple clinical appli-
cations if a general purpose NLP software is not available. A similar study used REs to
find patterns in genes [Sharmila and Sakthi 2018].

C O M P U T E R S C I E N C E E D U C AT I O N NOPRONwas designed by Ade-Ibijola et al. [2014] to aid
the comprehension of novice programs. This tool translates these programs into detailed
textual descriptions using REs.

S E C U R I T Y A P P L I C AT I O N S Xie et al. [2008] designed a framework called AutoRE, that de-
tects spam mail using REs. The study concluded that this approach significantly re-
duced the false positive rate in the result. The study was extended to a tool named
BotGraph [Zhao et al. 2009], developed to detect botnet spamming targeted at most
email providers.

3.8.2 CFGs Applications

CFGs have been applied to many diverse tools in different domains. In this section, we present
some of the tools that have used CFGs.

P R O G R A M S Y N T H E S I S E R A program synthesiser that uses CFGs to automatically gener-
ate procedural programs in Python was developed by Ade-Ibijola [2018a]. The study
emphasised that CFGs can be extended to automatically generate programs in other
procedural programming languages.

F I N A N C I A L C H AT A N A LY S E R A tool developed by Ade-Ibijola [2016a] that uses CFGs for
the automatic comprehension and summarisation of financial chats retrieved from the
Instant Bloomberg messaging application.

13 A mobile operating system developed by Apple Inc
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F U Z Z Y S Y S T E M A tool using CFGs to improve the elicitation of linguistic information in
decision making was designed by Rodríguez et al. [2016]. This study showed that CFGs
were used to provide a formal approach to the building linguistic expressions in fuzzy
systems.

LY R I C S G E N E R AT O R Designed by Pudaruth et al. [2014], this uses CFGs rules and statistical
constraints to automatically generate song lyrics.

P R O F I L E S Y N T H E S I S E R A tool that uses a variation of CFGs in the automatic generation of
hypothetical social media profiles [Ade-Ibijola 2017c]. The study concluded that CFGs
might be extended to similar problems in the health and social media domains.

3.8.3 JFA Applications

A number of studies have considered JFA for natural language abstraction. Here, we present
a few of these studies.

A U T O M ATA - L I K E S Y S T E M S Cienciala et al. [2014] introduced Automaton-like P Colonies
systems (or APCol systems) as formal methods that include JFA in membrane and dis-
tributed systems.

G A M E T H E O R Y Maubert and Pinchinat [2013] proposed the use of JFA for uniform strate-
gies in game theory applications. Bozzelli et al. [2015] extended the study for winning
conditions and module-checking scenarios using a JFA.

F R E Q U E N T LY A S K E D Q U E S T I O N S Okwunma [2018] proposed the use of JFA for the ab-
straction of FAQs14 in natural language for information retrieval tasks. The study ex-
tended this approach into a QA system (chatbot) that allows the comprehension of cus-
tomer queries.

T W E E T C O M P R E H E N S I O N Obare et al. [2019] presented a tool called an Automata-Aided
Tweet Comprehension (ATC) using a JFA for the automatic comprehension of tweets.
The study reported that JFA was effective for this task.

3.9 T H E G A P

This section highlights the outstanding areas of research, given the background of works that
have been investigated. While there are many studies that have proposed tools that aid the
comprehension of SQL, there is still a persistent need for new/improved methods to:

1. recognise using a formal approach such as REs for SQL queries that may seem confusing
for users,

2. seek to recognise nested SQL queries that exist in different forms cascaded with bal-
anced parentheses using another formal approach using a CFG,

3. create a tool that implements the synthesis of speech to SQL query,

4. generate SQL queries using a visualiser that applies visual specifications to build the
queries, and

5. develop an approach to parse natural language into SQL query using a JFA. NLP is an
area of AI, which introduces a higher complexity when SQL queries are synthesised
from natural language.

14 Frequently Asked Questions
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3.10 C H A P T E R S U M M A RY

In this chapter, the background related to SQL was presented. First, the challenges faced when
learning and writing SQL queries were presented. Second, a number of pedagogical patterns
and learning approaches were presented. Next, different state-of-the-art tools for the teaching
and learning of SQL were highlighted. Then, a review of NLP and related areas was con-
ducted. The last section enumerated the gaps that motivated this research. Part ii introduces
two of the methods using narrations that were proposed for this research.





Part II

S Q L C O M P R E H E N S I O N A N D N A R R AT I O N

Teaching queries in plain English eliminating syntactic barriers, is the goal of
achieving SQL comprehension. This approach to teaching was first proposed by
Fincher [1999] and regarded as the SFA. To aid program comprehension, this ap-
proach to teaching was termed narrations by Ade-Ibijola et al. [2014]. This approach
helps to abstract a program without first considering the syntax of the language.
Since SQL have less control structures, we have extended this approach of teach-
ing for SQL for the first time, ignoring the syntax that describes unique sets of
rules and guidelines of the language. The technique described was used for the
automatic generation of explanations for simple queries using REs. In addition,
to aid the understanding of nested queries, a CFG was used to recognise nested
queries in an attempt to improve comprehension for these types of queries.
This part comprises of two chapters. Chapter 4 presents a formal technique, using
REs to recognise simple SQL queries and describes the tool designed. In Chapter 5,
a CFG was described for the recognition of nested queries and a tool was designed
for the automatic generation of narrations for nested queries.





4C O M P R E H E N D I N G A N D N A R R AT I N G Q U E R I E S U S I N G R E G U L A R
E X P R E S S I O N S

The previous chapter outlined the background related to this research. This chapter
presents a formal approach using REs for the recognition of different SQL query con-
structs. This was built into a tool called S-NAR, that automatically translates the recog-

nised SQL constructs into textual explanations (i.e. narrations). S-NAR was tested with 5000
queries and some performance results were presented.

4.1 I N T R O D U C T I O N

REs are powerful methods for text processing which have played significant roles for many
CS applications [Gogte et al. 2016; Harden 2017; Ganty and Valero 2019]. These applications
range from operating systems and search engines to text editors, etc. In many programming
languages, REs are inbuilt as standard libraries and present in the syntax of others [Cappers
and van Wijk 2017]. Newer applications of REs are found in Logstash [Hamilton et al. 2018],
Elasticsearch [Zamfir et al. 2019] and Grep [Ganty and Valero 2019] for finding patterns in texts.
In this study, we have used REs for the recognition of SQL constructs. The formal definition
of REs have been provided in Chapter 2.

Figure 22: SQL query narration process

In this chapter, we propose a way to aid SQL comprehension via the automatic genera-
tion of narrations. Narrations are textual descriptions of queries that are presented in plain
English, eliminating high level language and syntactic barriers often faced by novices. This
style of teaching high-level languages was termed the SFA by Fincher [1999] and has been
shown to aid comprehension of novice programs [Ade-Ibijola et al. 2014; Ade-Ibijola 2016b].
In this work, we have extended this approach to SQL queries for the first time and since SQL
queries generally have lesser complex control structures (with no loops, nested constructs,
etc), a recogniser based on the class of regular languages was used to parse and generate nar-
rations from SQL queries. In Figure 22, we show how this technique works on SQL queries.
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The query is first tokenised1. The tokens are grouped into syntactic parts at a recognition
stage. The recognised sentential forms are then passed to a narrator. The narrator contains
pre-defined templates that convert patterns of query into textual descriptions. Finally, the re-
sulting narration is displayed to the novice/learner.

4.2 T R A N S L AT I N G Q U E R I E S I N T O N A R R AT I O N S

Narrations have been applied in program comprehension [Ade-Ibijola et al. 2014; Ade-Ibijola
2016b], with no application to scripting languages such as SQL. In this section we describe
how we have translated SQL queries to narrations. Narrations (as previously generated
from programs) are step-wise descriptions of programming instructions and often longer
than programs they represent. Narrations are different from comments because they do not
provide much semantics as often used in programs — and are referred to as syntax-free
textual algorithms [Ade-Ibijola et al. 2014]. For SQL queries, we present a sample narration.
In Listing 3, we show a simple SQL query for creating a database table with five fields, while
Algorithm 1 shows its narration.

Listing 3: SQL query to create a table with five fields

CREATE TABLE s t u d e n t _ r e c o r d (
StudentID i n t ,
LastName v a r c h a r ( 2 5 5 ) ,
FirstName v a r c h a r ( 2 5 5 ) ,
Address v a r c h a r ( 2 5 5 ) ,
C i ty v a r c h a r ( 2 5 5 )
) ;

Algorithm 1 SQL query to create a table with six fields
This query creates a table named student_record and declares StudentID as an integer, Lastname as
an alphanumeric entry of at most 255 character, Firstname as an alphanumeric entry of at most 255
characters, Address as an alphanumeric entry of at most 255 characters and City as an alphanumeric
entry of at most 255 characters.

In this work, we have developed a tool that takes SQL queries and generates narrations
similar to Algorithm 1. The next section of this work presents REs for the recognition of the
syntax of SQL, a stage before narration generation.

4.3 R E G U L A R E X P R E S S I O N S F O R S Q L A B S T R A C T I O N

This section presents REs for recognising the syntactic components of queries, from charac-
ters to tokens and the various distinguished commands. First, we introduce a hierarchical
diagram in Figure 23 that describes the different categories of SQL statements. This helps
us in structuring the granularity level of the REs to be designed to recognise the queries. In
Figure 23, we show how SQL can be broadly broken down into two categories of statements
— DDL and DML. The DDL contains five major types of commands that are used to de-
fine/redefine database structures (such as Tables, Views, etc.) in the memory, while the DML
is used to perform record-changing operations on the data committed to already existing
objects. The relation in Figure 23 is used in structuring the REs used in parsing queries prior

1 Here, Normalisation is assumed to be a sub-stage of tokenisation.
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to narration composition.

Figure 23: Categories of SQL commands

In Table 2, we present the basic lexemes in queries (across DML and DDL queries) that form
a building block for the syntactic structures in higher levels of granularity. These include:
specifications for identifiers (specified in similar fashion as in programming languages), the
end of line delimiter, white spaces, commas, brackets, operators and values. Other streams of
characters are also presented at this level such as: list of quoted and unquoted string/integer
values that are separated by commas. These values often appear in many queries.

We proceed and present REs for DDL statements in Table 3. The ALTER construct allows
for renaming a table or options to add, drop or modify columns of the table. Hence, we have
two expressions in Table 3. The DROP RE recognises statements for deleting a database or
a table. The RENAME, TRUNCATE and CREATE REs are similarly specified. The REs for
recognising DML constructs are shown in Table 4, together with the different variations of the
SELECT command.

4.4 I N T R O D U C I N G S - N A R

We have implemented S-NAR as a desktop application (Figure 24) using the regular expres-
sion library provided in the .NET framework [MSDN 2017]. We tested S-NAR with a dataset
of 5000 SQL queries. S-NAR successfully narrated 4824 queries presented to it (about 96.48%).
We noted that all failed instances were queries that had balanced parenthesis in them. This
is because the language of balanced parenthesis is nonregular, hence, REs did not suffice in
those instances. A parser based on a CFG will sufficient to handle this hitch. The remainder
of this section shows and discusses some results from S-NAR.

4.4.1 Implementation and Results

In this section, we present results obtained from the narration of some queries during the
testing stage of S-NAR.

4.4.2 DDL Statements

S-NAR was successful in narrating DDL statements. Listing 4 shows an ALTER statement
and the generated narration for this statement is shown in Algorithm 2. S-NAR removes all
the technical terms such as DROP, MODIFY, etc., and presents an intuitive summary. English
words that are usually intuitive, such as ALTER, are left in the narration generated by S-NAR.
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Table 2: Queries at the Lowest Granularity Level
Token Abbreviation RE (.Net)

Identifier ident [A-Za-z_][A-Za-z0-9_]*

Number number [1-9][0-9]*

Semi colon semi_colon \;

One or more white spaces n_spc \s+

Zero or more white spaces spc \s*

All all \*

Assignment ass_sym \=

Bracket open bra_open \(

Bracket close bra_close \)

Comma comma \,

Greater than greater_than (\>)

Less than less_than (\<)

Not equal to not_equal_to (\!\=)

Not greater than not_greater_than (\!\>)

Not less than not_less_than (\!\<)

Greater than or equal to greater_than_equal (\>\=)

Less than or equal to less_than_equal (\<\=)

Logical operators log_op (AND|OR|ANY|LIKE|NOT|BETWEEN|EXISTS)

Arithmetic operators ari_op (\+|\-|\*|\/|\%)

Comparison operators comp_op (\=|\!\=|\<|\>|\!\<|\!\>|\<\=|\>\=)

Integer value int_val (\-?\d+)[+-]?

Varchar value varchar_val (A-Za-z_)*

Boolean value bool_val (true|false)

Float value flot_val (\d\d?\.\d\d?)

Data type datatype (int|varchar|bool|float)

Ident separated by comma
value

ident_sep_by_comma ((bra_open)(ident)(spc)(comma)(spc))*
((bra_open)(ident)(bra_close))

Value in quote val_in_quote ((\’)(bra_open)(ident)|(number) |
(flot_val)|(n_spc)| (comma)(bra_close))+
(\’))

List of values in quote list_of_vals_in_quote (bra_open)(val_in_quote)
(spc)(comma)(spc)(bra_close)*
(val_in_quote))

List of values separated by
comma

list_vals_sep_comma (bra_open)(spc)(list_of_vals_in_quote)
(spc)(bra_close)

Ident equals value ident_equal_val (ident)(comp_op)(val_in_quote)(comma)

*(ident)(comp_op)(val_in_quote))

Table 3: DDL statement building blocks
Statement Abbreviation RE (.Net)

ALTER alter

(ALTER)(_n_spc)(TABLE)(n_spc)(ident)
(n_spc)(RENAME)(n_spc)(TO)(n_spc)
(ident)(semi_colon)
(ALTER)(n_spc)(ident)(n_spc)
(ADD|DROP|MODIFY)(n_spc)(COLUMN)
(n_spc)(ident)(n_spc)
(datatype)(semi_colon)

DROP drop (DROP)(n_spc)(DATABASE|TABLE)(n_spc)(IF)
(n_spc)(EXISTS)(n_spc)
(ident_sep_by_comma) (semi_colon)

RENAME rename
(RENAME)(n_spc)(TABLE)(n_spc)(ident)
(n_spc)(TO)(n_spc)(ident)(semi-colon)

TRUNCATE truncate (TRUNCATE)(n_spc)(TABLE)(n_spc)(ident)
(semi-colon)

CREATE create (CREATE)(n_spc)(DATABASE|TABLE)(n_spc)
(ident)(bra_open)(ident_sep_by_comma)
(datatype)(semi_colon)
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Table 4: DML statement building blocks
Statement Abbreviation RE (.Net)

DELETE delete (DELETE)(n_spc)(FROM)(n_spc)(ident)(n_spc)
(WHERE)(n_spc)(ident)(comp_op)
(val_in_quote)(semi_colon)

INSERT insert

(INSERT)(n_spc)(INTO)(n_spc)(ident)
(n_spc)(bra_open)(n_spc)
(ident_sep_by_comma)(spc)
(VALUES)(spc)
(list_of_values_sep_by_comma)(semi_colon)

SELECT select (SELECT)(n_spc)(ident_sep_by_comma|all)
(n_spc)(FROM)(n_spc) (ident)(semi_colon)

SELECT DISTINCT distinct (SELECT)(n_spc)(DISTINCT)(n_spc)
(ident_sep_by_comma)(n_spc)(FROM)
(n_spc)(ident)(semi_colon)

SELECT WHERE where

(SELECT)(n_spc)(ident_sep_by_comma|all)
(n_spc)(FROM)(n_spc)(ident)
(n_spc)(WHERE)(n_spc)(ident)
(comp_op)((\’)(ident)(\’)|
(number))(n_spc)(AND|OR)(n_spc)(ident)
(comp_op)((\’)(ident)(\’)|
(number))(semi_colon)

SELECT WHERE_IN where_in

(SELECT)(n_spc)(ident_sep_by_comma|all)
(n_spc)(FROM)(n_spc)(ident)(n_spc)(WHERE)
(n_spc)(ident)(n_spc)(IN)
(n_spc)(list_of_values_sep_by_comma)
(semi_colon)

SELECT
WHERE_BETWEEN

where_between

(SELECT)(n_spc)(ident_sep_by_comma|all)
(n_spc)(FROM)(n_spc)(ident)(n_spc)(WHERE)
(n_spc)(ident)(n_spc)(BETWEEN)(n_spc)
((\’)(ident)(\’)|
(number))(AND)(n_spc)((\’)
(ident)(\’)|(number))
(semi_colon)

SELECT WHERE_LIKE where_like

(SELECT)(n_spc)(ident_sep_by_comma|all)
(n_spc)(FROM)(n_spc)(ident)(n_spc)
(WHERE)(n_spc)(ident)(n_spc)(LIKE)
(n_spc)((\’)(ident)
(\’)|(number))(semi_colon)

SELECT ORDER order_by

(SELECT)(n_spc)(ident_sep_by_comma|all)
(n_spc)(FROM)(n_spc)(ident)(n_spc)
(ORDER BY)(n_spc)(ident)(n_spc)
(ASC|DESC)(semi_colon)

SELECT GROUPBY group_by
(SELECT)(n_spc)(ident_sep_by_comma|all)
(n_spc)(FROM)(n_spc)(ident)(n_spc)
(GROUP BY)(n_spc)(ident)(semi_colon)

SELECT HAVINGCOUNT having_count

(SELECT)(n_spc)(COUNT)(ident_sep_by_comma)
(n_spc)(FROM)(n_spc)(ident)(n_spc)
(GROUP BY)(n_spc)(ident)(n_spc)
(HAVING COUNT)(n_spc)(ident)(comp_op)((\’)
(ident)(\’)|(number))
(semi_colon)

Listing 4: ALTER statement query

ALTER TABLE s u p p l i e r ADD COLUMN
s u p p l i e r _ n a m e v a r c h a r ( 2 5 5 ) ;

ALTER TABLE s u p p l i e r DROP COLUMN
s u p p l i e r _ n a m e v a r c h a r ( 2 5 5 ) ;

ALTER TABLE s u p p l i e r MODIFY COLUMN
s u p p l i e r _ n a m e v a r c h a r ( 2 5 5 ) ;

The CREATE statement in Listing 5 is narrated in Algorithm 3. In this case, S-NAR
abstracted the varchar data type, and referred to it as alphanumeric — in order to aid
comprehension. Listing 6 is a DROP statement that is narrated in Algorithm 4 — here the
DROP keyword is abstracted as ERASE for ease of understanding.
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Figure 24: Screenshot of S-NAR during the narration of a SELECT query

Algorithm 2 Narration of the ALTER statement

1: This query alters the supplier table by adding a new column called supplier_name that allows
alphanumeric entry with at most 255 characters

2: This query alters the supplier table by removing a new column called supplier_name that allows
alphanumeric entry with at most 255 characters

3: This query alters the supplier table by modifying a new column called supplier_name that allows
alphanumeric entry with at most 255 characters

Listing 5: CREATE statement query

CREATE DATABASE s t u d e n t _ d b ;
CREATE TABLE s t u d e n t _ i n f o r m a t i o n (
ID i n t ,
F i r s t n a m e v a r c h a r ( 2 5 5 ) ,
Lastname v a r c h a r ( 2 5 5 ) ,
Gender v a r c h a r ( 5 0 ) ,
Address v a r c h a r ( 2 5 5 )
) ;

Algorithm 3 Narration of the CREATE statement

1: This query creates a database named student_db
2: This query creates a table named student_information, and declares ID as an integer, Firstname as

an alphanumeric entry of almost 255 character, Lastname as an alphanumeric entry of at most 255
characters, Gender as an alphanumeric entry of at most 255 character, Address as an alphanumeric
entry of at most 255 characters.

Listing 6: DROP statement query

DROP DATABASE IF EXISTS s t u d e n t _ i n f o r m a t i o n ;
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Algorithm 4 Narration of the DROP statement

1: This query erases the student_information database from the computer memory given that it pre-
viously exists

Listing 7 and Listing 8 describe two queries for renaming and truncating a table. These
queries are narrated in Algorithm 5 and Algorithm 6 respectively.

Listing 7: RENAME statement query

RENAME TABLE s t u d e n t _ r e c o r d TO s t u d e n t _ i n f o r m a t i o n ;

Algorithm 5 Narration of the RENAME statement

1: This query renames the student_record table to student_information

Listing 8: TRUNCATE statement query

TRUNCATE TABLE s t u d e n t _ i n f o r m a t i o n ;

Algorithm 6 Narration of the TRUNCATE statement

1: This query empties the contents from the student_information table

4.4.3 DML Statements

S-NAR was successful in narrating DML statements. Listing 9 shows the DELETE statement
and its narrations. Here, the equals sign is abstracted to “is” as depicted in Algorithm 7.
The INSERT statement in Listing 10 is narrated in Algorithm 8 with the keyword INSERT
abstracted as ADD. The SELECT statement follows a similar narration pattern with its
different variations (sometimes, having optional WHERE clause, DISTINCT and COUNT
keywords, etc.) shown in Algorithm 9.

Listing 9: DELETE statement query

DELETE FROM s t u d e n t _ i n f o r m a t i o n WHERE
s t u d e n t _ f i r s t n a m e = ’ p e t e r ’ ;

Listing 10: INSERT statement query

INSERT INTO s t u d e n t _ i n f o r m a t i o n ( FirstName ,
LastName , Address , City , Po s t a lCode , Country )
VALUES ( ’ P e t e r ’ ,
’Tom ’ ,
’ 21 c l a i m s t r e e t ’ ,
’ R i v o n i a ’ ,
’ 2001 ’ ,
’ South A f r i c a ’ ) ;
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Algorithm 7 Narration of the DELETE statement

1: This query removes from the student_information table where the student_firstname is peter

Algorithm 8 Narration of the INSERT statement

1: This query adds into the student_information table into columns; FirstName, LastName, Address,
City, PostalCode, Country with details; Peter, Tom, 21 claim street, Rivonia, 2001, South Africa

Listing 11: SELECT statement query

SELECT * FROM s t u d e n t _ i n f o r m a t i o n ;

SELECT DISTINCT FirstName , LastName
FROM s t u d e n t _ i n f o r m a t i o n ;

SELECT * FROM s t u d e n t _ i n f o r m a t i o n
WHERE FirstName= ’ p e t e r ’ AND LastName= ’ mark ’ ;

SELECT * FROM Customers
WHERE Country= ’ South A f r i c a ’
OR Ci ty = ’ Harare ’ ;

SELECT * FROM s t u d e n t _ i n f o r m a t i o n
WHERE FirstName IN ( ’ p e t e r ’ , ’ j ohn ’ , ’ f e l i x ’ ) ;

Algorithm 9 Narration of the SELECT statement

1: The query displays all information from the student_information table
2: The query displays only the distinct column - FirstName and LastName information from the

student_information table
3: The query displays all the details from the student_information table where the FirstName is ’peter’,

and the LastName is ’mark’
4: The query displays all the information from the Customers table where the Country is ’South

Africa’, or City is Harare
5: The query displays all the information from the student_information table where the FirstName

are either ’peter’,’john’,’felix’

4.5 S C O P E A N D L I M I TAT I O N S

Up to this point, we have presented a tool called S-NAR that uses REs for recognising
the constructs of simple DML and DDL queries, some of which had the WHERE clauses.
Generating narrations for them was a relatively trivial task. One major limitation to note is
that SQL queries sometimes come in more complex forms. For instance, it is possible to have
queries and sub-queries, nested to several depths, and cascaded with balanced parentheses2 as
shown in Listing 12.

Here, there are two nested SELECT statements. The first one is a simple one that draws
values from the Journals table, with the second part specifying the filter. Observe there are
two pairs of parentheses in this query. Recognising this language will require more than REs;

2 The language of balanced parentheses is not a regular language.



4.6 C H A P T E R S U M M A RY 69

i.e. a CFG for balanced parentheses can be used for this. This is similar to many programming
languages, where REs are only useful for lexical analysis and not building parsers.

Listing 12: A non-regular nested SQL query

SELECT numcount , J n l s . *
FROM J o u r n a l s J
WHERE numcount <=(SELECT COUNT( * / 2 )

FROM J o u r n a l s ) ;

4.6 C H A P T E R S U M M A RY

In this chapter, we have presented S-NAR, a software tool that translates SQL queries into
textual description of the implied operations. S-NAR uses REs to first extract and group
the tokens of an SQL query into syntactic categories and passes these grouped tokens to
a module that uses predefined narration templates for the automatic generation of textual
descriptions, referred to as narrations. S-NAR was also tested on 5000 queries scrapped
from the Internet and it narrated a subset of these queries (96%) that do not contain
balanced parentheses. This is only recognisable with CFGs or higher classes of formal ab-
stract machines. We have argued that the generated narrations can aid the comprehension of
SQL or be used to support teaching, in line with the SFA to programming language pedagogy.

Chapter 5 presents a CFG used to recognise nested queries cascaded with balanced paren-
theses. This handles the hitch faced with the current implementation of S-NAR.
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In the previous chapter, a formal approach using REs was used for the recognition of SQL
query constructs. A major limitation was identified, where REs were unable to recog-
nise nested SQL queries. This chapter presents an extension to the use of narrations for

describing nested queries cascaded with balanced parentheses using a CFG.

5.1 I N T R O D U C T I O N

CFGs are more powerful than regular languages (or REs) and have been used to describe
nested parenthesis for programming languages [Cereda and Neto 2017; Bastani et al. 2017].
Hence, CFGs are formal notations used for expressing recursive definitions in programming
languages. Since nested queries are defined recursively, this work extends the recognition of
nested SQL queries using a set of rewriting rules (or production rules). To our knowledge,
this appears to be the first time such an approach will be extended to recognise nested SQL
queries. The formal definition of CFGs has been provided in Chapter 2.

Figure 25: The framework of the SQL Narrator

This chapter presents an SQL Narrator that automatically generates narrations for a nested
query. The term “narrations” was first coined by Ade-Ibijola [2016b] and was described as a
textual description of programs in plain English and has been shown to aid the comprehen-
sion of novice programs [Ade-Ibijola et al. 2014; Ade-Ibijola 2017b]. The authors in [Ade-Ibijola
and Obaido 2017] extended the use of narrations for describing simple queries using prede-
fined templates. This was presented in Chapter 4. This chapter presents an improved version
of the study that describes nested queries with balanced parentheses using CFGs – a subset
of irregular languages to parse and generate narrations from SQL queries. Figure 25 shows
how this approach generates a narration for a nested SQL query. First, the query is tokenised
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and grouped into a syntactic form for recognition, using Coco/R1 that generates a scanner
and parser. The sentential forms, derived as patterns, are then available to a narrator that
checks these patterns for matches before converting the query into textual descriptions (or
narrations). The generated narration is then presented to the learner.

5.2 C F G D E S I G N F O R S Q L Q U E R I E S

This section presents the design of CFGs for the recognition of nested queries. This approach
was used in the automatic generation of narrations for SQL queries. In this aspect, CFGs were
designed using the compiler generator (Coco/R) that takes an attributed grammar, uses this
grammar to generate a scanner and a parser. This is indexed in Appendix C. These generated
elements (parser and scanner) were used to verify syntactic correctness of a query. To design
the grammar, we adopt the Ron Savage’s EBNF (Extended Backus–Naur Form) SQL grammar
as described in [Savage 2017].

5.2.1 Building Blocks

To design the grammar G, we present the lexemes which are sequences of characters matched
by a pattern for tokens used to build the production rules, P. These result in a set of terminal
symbols Σ, such as letters, digits, num, etc (Productions 1 to 20). In Production 1 to 3, letters
are defined and will appear in the list of identifiers (for example, student, lab01, etc). Produc-
tions 4 and 5 show numerical values that may appear. Productions 6 to 12 present semicolon,
comma, open and close brackets, open and close quotes and period. Production 13 shows the
symbol “all” which is used to display the entire information in a table/database. Production
14 shows whitespaces between strings.

<letter>∗ −→ <letter>(<letter>)∗ (1)

<letter> −→ A |...| Z| a |...| z (2)

<ident> −→ <letter>∗<num> (3)

<num> −→ <digit><digit>∗ (4)

<digit> −→ 0 |...| 9 (5)

<semi_c> −→ ; (6)

<comma> −→ , (7)

<brac_open> −→ ( (8)

<brac_close> −→ ) (9)

<open_q> −→ ‘ (10)

<close_q> −→ ’ (11)

<period> −→ . (12)

<all> −→ * (13)

Productions 15 to 16 show the supported data type. Productions 18 to 20 present the opera-
tors such as arithmetic, relational and logical.

1 http://www.ssw.uni-linz.ac.at/Coco/
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<wspace> −→ ws (14)

<type> −→ int | varchar | boolean | float (15)

<boolean> −→ true | false (16)

<float_v> −→ <digit><digit><period><digit><digit> (17)

<arith_opr> −→ + | - | * | / | % (18)

<rel_opr> −→ < | > | = | != | !< | !> | >= | <= (19)

<log_opr> −→ OR | XOR | AND | ANY | LIKE | NOT | EXISTS |

BETWEEN | IN | IS NULL | UNIQUE (20)

We proceed to build productions for terms, identifiers and expressions used in Productions
21 to 25. Production 22 is defined recursively allowing the occurrence of either identifiers,
numbers or decimal values.

<ident_sep_by_comma> −→ <ident_sep_by_comma>(<ident><comma>)∗

<ident> | <all> (21)

<vals_in_qts> −→ <open_q>(<vals_in_qts><ident>|

<vals_in_qts><num>|<vals_in_qts>

<float_v>)∗<close_q> (22)

<vals_list_qts> −→ <brac_open><vals_in_qts>

<brac_close> (23)

<vals_list_sep_by_comma> −→ <brac_open><vals_list_qts>

<brac_close> (24)

<ident_condt_val> −→ <ident><rel_opr><vals_in_qts> (25)

We have presented the productions for the elements of our grammar as specified from
Production 1 to Production 25. Next, we provide productions for the SELECT statement
(<select_sub>) as seen in Production 26 and Production 29. The <select_sub> sym-
bol satisfies the SELECT...WHERE...FROM statement and will be used to build the nested
queries.

<select_stm> −→ <select_stm><select_sub><semi_c> (26)

<select_sub> −→ SELECT<wspace><cols_list><wspace>FROM<wspace>

<ident><wspace>WHERE<wspace><condt_stmt> (27)

<cols_list> −→ <cols_list>DISTINCT<wspace><ident> |

<cols_list><ident_sep_by_comma> |

<cols_list><ident> |

<cols_list><all> (28)

<condt_stmt> −→ <ident_condt_val> (29)

5.2.2 Nested SQL Queries

A nested query is essentially a query inside another (inner and outer) query, which is
common with the SELECT statements [Elhemali et al. 2007]. These statements are embedded
within the WHERE or HAVING clause. In this section, we describe the productions for sub-
queries in the UPDATE, DELETE, INSERT and SELECT statements.

We start by defining the production for subqueries in the UPDATE statement. Production 30
describes the UPDATE subquery statement. The symbol <select_sub> allows the use of the
SELECT query within the UPDATE statement to form a subquery. In most cases, this appears
within the IN clause.
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<update_sbqy> −→ UPDATE<wspace><ident><wspace>SET<wspace>

<ident><rel_opr><num><wspace>WHERE<wspace>

<ident><wspace>IN<brac_open><select_sub>

<brac_close><semi_c> (30)

Production 31 describes the DELETE subquery statement. This includes the <select_sub>
symbol used to present the DELETE subquery statement.

<delete_sbqy> −→ DELETE<wspace>FROM<wspace><ident><wspace>WHERE

<wspace><ident><wspace>(<rel_opr>|<log_opr>)

<brac_open><select_sub><brac_close><semi_c> (31)

Production 32 defines the INSERT subquery statement. In this statement, the
<select_sub> symbol is used within the INSERT query to describe the subquery.

<insert_sbqy> −→ INSERT<wspace>INTO<wspace><ident><brac_open>

(<ident_sep_by_comma>|<ident>)<brac_close>

<brac_open><select_sub><brac_close><semi_c> (32)

In Production 33, the SELECT subquery is described. In this subquery, the <select_sub>
symbol is used within the WHERE clause.

<select_sbqy> −→ SELECT<wspace><cols_list><wspace>FROM<wspace>

<ident><wspace>WHERE<wspace><ident><wspace>IN

<wspace><brac_open><select_sub><brac_close>

<semi_c> (33)

In conclusion, we define the start symbol S∈P, used to begin the grammar G as described
in Chapter 2. This is presented from Production 34 to 37.

<nested_qry> −→ <update_sbqy> | (34)

−→ <delete_sbqy> | (35)

−→ <insert_sbqy>| (36)

−→ <select_sbqy> (37)

5.3 T R A N S L AT I N G N E S T E D Q U E R I E S I N T O N A R R AT I O N S

In the previous section, the grammar design for nested queries was described. This section
presents how nested queries are translated into textual narrations. Narrations are used to
describe programs and they are generally termed syntax-free textual algorithms [Ade-Ibijola
et al. 2014; Ade-Ibijola 2017b]. In Chapter 4, narrations were applied to describe simple SQL
queries. The result showed that REs were not sufficient to generate narrations for complex
queries. This section shows how CFGs are able to generate narrations for nested queries. In
Algorithm 10, we show how the narration is generated. This recursive function takes a nested
query (given as a list of queries and subqueries) and returns a concatenation of the query and
all its subqueries.

For nested queries, we present the following narrations. The types of narrations we describe
are inner to outer (flow from right to left), outer to inner (left to right) and co-joined (joining
the queries together). Hence, the flow of information starts with the first query before ending
with the query cascaded inside the balanced parentheses, and vice versa. In Listing 14, a row
is deleted from a table using the nested query, and the corresponding narrations are presented
in Algorithm 11, Algorithm 12 and Algorithm 13.
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Algorithm 10 Generating Narrations

1: function getNarration(Q[i]) returns String . Q[i] = (q1,q2, . . . ,qi)
2: if (i = 1) then
3: return Narrate(qi)
4: else
5: return Narrate(qi) + getNarration(Q[i− 1]) . narration of Q
6: end if
7: end function

Listing 13: Nested SQL query to delete a row

DELETE FROM c o u n t r y
WHERE c i t y IN
( SELECT c i t y
FROM c o u n t r y
WHERE c i t y = " P r e t o r i a " ) ;

Algorithm 11 Narration 1: Outer to Inner subquery
This query displays the city information from the country table where the city is equal to Pretoria and
removes the entire information from the country table.

Algorithm 12 Narration 2: Inner to Outer subquery
This query removes the information from the country table where the city is contained in the values
retrieved from the inner query, which gets all the city information that has a city equal to Pretoria

Algorithm 13 Narration 3: Co-joined subquery
This nested query contains two queries, where the first query removes the contents from the country
table where the city appears in the second query which displays the city information from the country
table where the city is equal to Pretoria

This example deletes from the country table a subset of rows whose city column value sat-
isfies the condition specified in the WHERE clause. In this example, the WHERE ... IN clause
specifies which rows to delete returned by the subquery. Hence, only the rows of the country
table where the city is equal to “Pretoria" is displayed. The next section presents the imple-
mentation and results of the SQL Narrator.

5.4 I M P L E M E N TAT I O N A N D R E S U LT S

The implementation of the SQL Narrator was carried out using the C# as the primary
language that runs on the .NET Framework. This tool was tested with datasets of nested
queries (in Appendix E) and successfully narrated them. An example of the narration using
the SQL Narrator is shown in Figure 26.

To use the SQL Narrator, a user is expected to enter a nested query into the querybox.
The nested query is then converted from characters into tokens and grouped into a sentential
form before the narration is displayed to the user. A help file is available to the user. This help
file contains a series of steps required to use the narrator.



76 C O M P R E H E N D I N G A N D N A R R AT I N G Q U E R I E S U S I N G C O N T E X T- F R E E G R A M M A R S

Figure 26: The process of narrating a nested query

The narration approach that has been presented in this work can be integrated into a SQL
pedagogy to assist students in learning nested queries for the first time. We believe that this
e-pedagogy will make it easier for students to understand nested queries.

5.5 C H A P T E R S U M M A RY

In previous studies within programming pedagogy, it was shown that narrations could be
used to enhance learning and assist novices in comprehending programming languages.
Another study examined the use of narrations for simple SQL queries. This work presents a
new direction of using narrations to assist learner understanding of nested queries.

In this chapter, a grammar-based approach that automatically translates nested SQL queries
into narrations was presented. This approach used the CFG formalism based on the Coco/R
parser generator that takes an attributed grammar and generates a scanner and parser. This
approach was implemented in a SQL Narrator based on the C# language that runs on the
.Net Framework. The SQL Narrator was tested with a dataset of nested queries and the
narrations were presented. In Part iii, we present the synthesis aspect of this study.



Part III

S Q L S Y N T H E S I S

Automatic synthesis of problems into SQL is instrumental to end-users with di-
verse backgrounds such as business analysts, financial professionals, marketing
personnel, etc [Wang et al. 2017a; Yaghmazadeh et al. 2017a]. These users frequently
use db applications but lack the technical expertise to write a correct SQL query.
Although these users can clearly describe what tasks they intend to perform, they
are often faced with how to specify what the intended query should be. Such con-
fusion may increase if they frequently need to engage with technical staff or seek
help through online forums just to perform their daily operation. Such process can
be time-consuming and frustrating. To mitigate these challenges, we propose dif-
ferent interactive user interfaces that these users can engage with. First, we present
a tool that allows a user to specify their query requests in a free-form termed as
narrations, then we show an interactive visualiser that uses drag and drop inter-
actions to generate a query using icons. Last, we present a speech-query tool that
takes a speech input and converts this into a query output.

This part contains three chapters. In Chapter 6, we describe the translation of narra-
tions into SQL queries and in Chapter 7, the visualiser for SQL queries is presented.
Chapter 8 describes the speech synthesiser tool for SQL queries.
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In Chapter 5 of Part ii, we presented a grammar-based approach that automatically trans-
lates nested SQL queries into narrations. This chapter introduces the synthesis aspect of
this thesis. In this chapter, textual narrations depicted as natural language descriptions

are translated into SQL queries and the resultant feedback is provided to the user. This ap-
proach uses a JFA, and was integrated into a tool called Narrations-2-SQL.

6.1 I N T R O D U C T I O N

JFA is an automata-based algorithm used for processing discontinuous information [Meduna
and Zemek 2014; Meduna and Soukup 2017]. This algorithm has been used in many domains
due to its expressive power [Meduna 2014; Fernau et al. 2015]. Since natural languages are
highly ambiguous in nature, we have extended the use of JFA to synthesise SQL queries from
natural language specifications. To our knowledge, this is expected to be the first time in
which such an approach will be applied for SQL query translation from natural language. Our
approach allows users to express their query in a free-form – in natural language to produce
the equivalent SQL query [Li and Jagadish 2014b; Norouzifard et al. 2008]. It should be noted
that this free-form approach expressed in natural language is regarded as narrations, and has
shown to improve program comprehension [Ade-Ibijola et al. 2014; Ade-Ibijola 2016b]. The
formal definition of a JFA has been provided in Chapter 2.

Figure 27: The framework of Narrations-2-SQL

This chapter presents the use of natural language specifications in a tool called
Narrations-2-SQL, to aid the understanding of SQL. The Narrations-2-SQL engine
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uses a JFA – a type of Finite Machine, to translate natural language specifications into SQL
queries, executes the query and provides feedback to a user. Figure 27 shows the frame-
work of Narrations-2-SQL. A user typesets a NLQ, which is then processed by the
Narrations-2-SQL. To begin, Narrations-2-SQL preprocesses the typed texts into a
stream of tokens, which is then passed to the JFA for matches. At this phase, the tokens
are matched and used to construct an SQL query. The equivalent query is used on the
XNorthwind DB [Ade-Ibijola and Obaido 2019] and the feedback is provided to the user.

6.2 N AT U R A L L A N G U A G E T O S Q L Q U E R Y

In this section, we show how we have abstracted natural language to a JFA. Our aim at this
phase is to remove unwanted features from the dataset and keep the relevant details (tokens)
as shown in Figure 27. To abstract the tokens into a JFA, we use the states, transition process
and data representation to understand the abstraction process. The XNorthwind database
consists of eight tables and 100000 iterations of datasets, which was used to train our JFA.

6.2.1 JFA Design

To abstract natural language specifications into a JFA, we identify the entities with matching
colours that make up the alphabet. These entities are query type or (

∑
QT = ax) in green,

column type or
∑

CT = by in red and entity or
∑

ET = cz in blue. Table 5 shows the JFA
symbols for the XNorthwind database used for this work. We show an example of a JFA and
the language it accepts.

Given a typed request from a user:

1. Please, help me to find all the employees’ information that work for this organisa-
tion

The JFA that follows:

M = ({R,S, T ,U}, {a5,b21, c7},R,R; {U})

{R,S, T ,U} are the states,
{a5,b21, c7}, are the input alphabets,
R is the set of rules.
R is a start state,
{U} is a final state.

with

R = {Ra5 → S,Sb21 → T , Tc7 → U}

accepts

L(M) = {w ∈ {a5,b21, c7}*: |a5| = |b21| = |c7|}

i.e. a5 = find;b21 = all; c7 = employees

b21a5c7b21c7Ra5 y b21a5c7Sb21c7 [Ra5 → S]

y b21a5c7Tc7 [Sb21 → T ]

y Ub21a5c7 [Tc7 → U]

Figure 28 shows a JFA with its transitions. It has four states, labeled as R, S, T, U. Here,
the start state is denoted as R and the accepting state, U, denoted by the double circle. From
the diagram, Ra5 moves to S, where the only string found is the find keyword. The second
transition shows the movement of Sb21 to T showing only the all keyword. Last, Tc7 moves
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R

S

T

U

a5 b21

c7

Figure 28: A JFA for Example 1

to U showing the employee keyword. It is worth noting that this example only shows four
states with corresponding transitions. We can have as many states and transitions, depending
on the input statement specified from the user.

Table 5: JFA symbols from 1 - 24

JFA symbols

ax by cz

a0 Display b0 OrderID c0 Suppliers

a1 Select b1 CompanyName c1 Products

a2 Show b2 ContactName c2 OrderDetails

a3 List b3 Supplierscol c3 Orders

a4 Return b4 ContactTitle c4 Categories

a5 Find b5 Address c5 Employees

a6 Compute b6 City c6 Customers

a7 Get b7 Region c7 Shippers

a8 Remove b8 PostalCode −

a9 Clear b9 Country −

a10 Delete b10 Phone −

a11 Change b11 Fax −

a12 Update b12 HomePage −

a13 Add b13 ProductID −

a14 Give b14 ShippersID −

a15 Discontinue b15 CategoryID −

a16 Make b16 Quantity −

a17 Increase b17 UnitsOnOrder −

a18 Create b18 ReorderLevel −

a19 Read b19 Discontinued −

a20 Insert b20 Productscol −

− b21 All −

− b22 ShipPostalCode −

− b23 HireDate −

− b24 Extension −
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6.2.2 Query Normalisation

This phase takes the keywords extracted from the JFA design to semantically form a proper
sequence for the SQL generator module. This approach was further strengthened using Word-
Net1. For example, words such as select, choose, pick and display are mapped to SELECT
keyword. Words such as insert, add, increase and build are mapped to the INSERT keyword.
Also words such as update and amend are mapped to the UPDATE keyword. For the DELETE
keyword, words such as remove and delete are mapped. The attributes of the XNorthwind
tables are the column details. Once mapped, the information is fed to the query generator.

6.2.3 SQL Generator Module

The query generator transforms the semantic information at the normalisation phase and gen-
erates an SQL query. Since this work is limited for a single-relation, this phase is quite straight-
forward. The generated query is used against the XNorthwind DB and the result is displayed
to the user.

6.3 I M P L E M E N TAT I O N , R E S U LT S A N D A P P L I C AT I O N S

6.3.1 Implementation and Results

The JFA technique described in this chapter was implemented into a tool called
Narrations-2-SQL. This tool was developed as a C# application specified using the Mi-
crosoft .NET framework. The implemented tool was tested with 204 crowdsourced queries
specified in natural language (as presented in Appendix D), sourced from the XNorthwind
DB. The XNorthwind DB was used in this study, which comprises eight tables and 100000
tuples. The result of the implementation can be found in Figure 29.

Figure 29: The user interface of Narrations-2-SQL

1 https://wordnet.princeton.edu/



6.4 C H A P T E R S U M M A RY 83

6.3.2 Applications of Narrations-2-SQL

We present possible applications of the tool we have designed for this study. As a tool,
Narrations-2-SQL can be used as a:

1. QA system,

2. teaching and learning aid,

3. tutoring system for SQL,

4. query tool for complex BI systems, and

5. natural language interface to query databases.

6.4 C H A P T E R S U M M A RY

This chapter describes a new approach to translating SQL queries from natural language. The
technique described in this work uses a JFA, designed into a tool called Narrations-2-SQL
for the purpose of SQL query translation from narrations. This work appears to be the first
application of abstracting natural language specifications to a JFA, in addition to mapping
this to an SQL query. This is a major contribution to the problems faced in the information
retrieval (IR) domain. In its framework, Narrations-2-SQL performs operations on the
XNorthwind database using simple SQL commands to create, retrieve, modify and delete
data. Feedback of the operation is presented to a user. If implemented on a large scale,
Narrations-2-SQL will assist end-users in different domains, to specify their queries
in natural language, and perform their tasks seamlessly without needing much help from
technical users. More so, our evaluation shows that the majority of the users agreed that this
approach can be useful in industry.

Chapter 7 describes the use of visual specifications that explores drag and drop interactions
of query-like images to generate SQL queries.
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In Chapter 6, we described the translation of natural language descriptions, termed nar-
rations, into SQL. These narrations are English-like descriptions specified by end-users
in natural language forms. This idea was implemented into a software tool called

Narrations-2-SQL. The tool is expected to assist end-users in writing correct queries,
which was a problem identified in the literature. This chapter presents a tool that uses pre-
defined images that represent SQL commands to generate a query. This study is expected to
improve students’ comprehension of the SQL query concept.

7.1 I N T R O D U C T I O N

Visual specifications are symbols used to represent features, which can be used to display
some text or program [Rojit et al. 2016]. In the programming concept, visual specifications
have been used to build and demonstrate a programming solution especially with problems
faced by students [Roberts et al. 2019; Eden et al. 2018]. This problem is not only limited to
program understanding; students struggle to memorise database schema [Kawash 2014; Cem-
balo et al. 2011; Garner and Mariani 2015]. In addition, writing DML expressions has shown
to be problematic for students Dekeyser et al. [2007]. In order to provide adequate support
to address these problems, there is a need to build interactive platforms, incorporated with
either animation or visualisation aids to support the understanding of SQL. In past decades,
a number of tools have been developed to provide support in learning SQL [Cembalo et al.
2011; Folland 2016]. Some of the existing tools employed interactive visualisations to aid SQL
understanding.

Figure 30: The framework of the SQL query generation

In this chapter, we propose the use of an interactive visualisation technique to aid the un-
derstanding of SQL. The visualisation technique ensures the interaction between visual speci-
fications to build queries and will eliminate the need to memorise database schemas, which is
a major problem faced by students learning SQL. In this work, we have developed an interac-
tive visualisation aid called SQL visualiser, which uses visual specifications of the ‘drag
and drop’ interactions for generating SQL queries. Although, this approach has found appli-
cation in the programming languages paradigm such as Alice [Dann et al. 2008], Scratch
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[Resnick et al. 2009] and StarLogo TNG [Wang et al. 2006], it has not (to the best of our knowl-
edge) been applied to SQL queries. Figure 30 shows the SQL query generation process. To use
the SQL visualiser, images are represented as visual specifications to depict the database
model. These images can be moved into the query box. When the moved images correspond
to a standard SQL SELECT statement, a query is generated and displayed to the user.

7.2 D E S I G N O F T H E S Q L V I S U A L I S E R

One aspect of queries which poses difficulties for students is the SQL SELECT construct
[Sadiq et al. 2004; Qian 2012]. This type of query is used to extract data from a relational
database [Kearns et al. 1997]. Hence, our main goal is focused on using visual aids to easily
generate queries by means of the SQL SELECT constructs. This idea can be extended to the
system of queries.

It is a common perception that students are better at recognising visual constructs rather
than at writing codes [Dekeyser et al. 2007]. Thus, this work is motivated by an intention to
use visual specifications in order to generate SQL queries. Also, another motive of developing
this SQL visualiser is to use it as a teaching and learning aid. We have found that database
schemas pose difficulties for students [Dekeyser et al. 2007], hence, our intention is to simplify
the process of understanding database schemas. We identify three main points to distinguish
our visualisation from other approaches.

I N T U I T I V E Our visualisation is intuitive to students who are learning SQL queries for the
first time. The visualisation uses images to depict each query statement. It helps students
better understand SQL queries since it helps them get a glimpse of the behaviour of the
image when each image is selected. Hence, students do not require extensive training to
understand how to use the visual aid.

I N T E R A C T I V E The visualisation tool is interactive, which means that students are not re-
quired to write any query statement in the application. They can simply click and drag
the images across panels. Query statements are generated at the same time.

H E L P F U L A help facility is provided before using the visualiser. A user is provided with an
instruction of the underlying database schema before using the application. Also, hints
are provided to the user and are specified using colours (green or red). These colours
show whether a query is wrong or correct. In addition, a textual suggestion is offered to
the user to ensure that the correct object is selected.

The SQL visualiser was implemented as a Windows Form Application and was in-
cluded as part of the .NET framework for the purpose of creating rich client applications
[Liberty 2005]. The visualisation tool consists of some components used for the generation of
a query. These components include schema, query box and query generator.

7.2.1 Schema

The schema shows the logical organisation of the data. In the visualiser, the schema consists
of tables and associated fields. The SQL query is based on the underlying schema. In addition,
if a schema is correct, the generated SQL query is correct, and vice-versa. Figure 31 depicts
the schema for this model.

In the schema, each table is shown by its name displayed at the top and its corresponding
attributes shown at the bottom. For example:

Lecturer (id, name, phone, email, department)
Courses (id, title, credits, description)
Student (id, name, gender, age, address)
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Figure 31: Logical organisation of the data

Each table is linked by a primary key. The unique identifier for the tables is the entity id.
The visualisation tool relies on the schema to generate the SQL query.

7.2.2 Query Box

The query box is used to specify subsets of the schema that the user is interested in. The query
box is also denoted as the building block for the query generator. In the query box, the schema
(represented by the images) are extracted into a form used by the query generator to generate
the SQL query. Each image is included with a caption for easy identification. Table 6, Table 7,
Table 8 and Table 9 represent the pictures and descriptions used to represent the schema.

Table 6: Symbols and description of the SELECT statement

Symbol SQL Block Description

SELECT This icon represents the SELECT statement

Table 7: Symbols and descriptions of the Lecturer table

Symbol SQL Block Description

* This denotes “all” in rows

id This icon represents the primary key field

name This icon denotes the name field

phone A representation for a phone field

email This symbol denotes an email field

Lecturer A representation for a lecturer field

7.2.3 Query Generator

The query generator transforms the images in the query box and presents a query to the
user. As more images are added, the query generator also adds the attribute to the query. The
generator phase is very straightforward since the scope of this work is limited to a single-
relation. The SELECT portion of the query consists of tables and attributes; where the FROM
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Table 8: Symbols and descriptions of the Courses table

Symbol SQL Block Description

* This denotes “all” in row

id This icon represents a primary key field

title This icon denotes a title field

credit A representation for a credit field

description This symbol represents a description field

Courses A representation for a course entity

Table 9: Symbols and descriptions of the Student table

Symbol SQL Block Description

* This denotes “all” in rows

id This icon represents an identity field

name An illustration for a name field

gender A symbol for a gender field

age A representation for age field

address An icon for an address field

Student This symbol represents a student entity

clause defines a table and the WHERE clause is defined by a field attribute and its value. We
illustrate this in Example 7.2.1.

Example 7.2.1. Consider a simple database table with the schema: Student (id, name, age). Now, write
a simple SQL query to display all information from the student table.

Figure 32: The process of generating an SQL query

Figure 32 presents the process that the query generator uses to present queries. When a user
adds the images into the query box (a), the query generator displays the visualisation from
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the images that were selected into the query box (b). More options used in this chapter are
presented in the next section.

7.2.4 More Options

O P E R AT O R S A N D VA L U E S In the SQL visualiser, we have explored some comparison
operators, such as the (= or equal to, < or less than and > or greater than). The comparison
operators are used within the generated query with values between 0 – 100 to show the
relationship. For each operator, the user can interactively determine which option to
select. Further, a user can select the preferred choice of value to use within the query by
using the scroll option provided. Once the scroll option is selected, it changes the value
within the generated query.

C O L O U R S In the HCI interface design specifications, colours have been described to convey
information [Brown 1998]. Within this specification, the association of colours may be
used for many purposes if this is implemented conservatively. Colours have salient fea-
tures, which are useful in human perception [Jost et al. 2005]. For example, the colour red
strongly indicates an error, while green indicates a normal or acceptable condition. These
colours were explored within the visualiser to indicate either an acceptable condition or
to respond criticality to a user’s error as presented in Figure 33.

Red (indicator of an error) Green (acceptable condition)

Incorrect query, drag the required field Fantastic! Your query is correct

Figure 33: Colours used to show annotations

7.3 R E S U LT S

We present the result from using the visualisation tool. Figure 34 shows the feedback received
from adding only the SELECT operation into the query box at runtime. The feedback received
will assist the user to specify the required visuals before the query can be generated. This
example shows that if the user inserts the correct table and its attributes, the query will be
successfully generated. The field “ID” was chosen as the primary key for each of the table,
and the value, “50” was selected; See Figure 35. The help facility showing the instruction
on how to use the SQL visualiser is presented in Figure 36. SQL visualiser was
compared with a number of SQL visualisation tools. Table 10 shows the result of the review.

Table 10: Existing tools versus the SQL Visualiser

Features eSQL SAVI SQlify sAccess eledSQL QueryViz Our tool (SQL Visualiser)

Visualisation of database schema 7 X X 7 7 X X

Visualisation of output data X X X X X 7 7

SQL query generation 7 7 7 7 7 7 X

Feedback on query semantics 7 7 X 7 7 X X

Visual object representation 7 7 7 7 7 7 X

Ideal for less knowledgeable users

(undergraduate students)
7 7 7 X X 7 X

We have presented a visualisation tool that applies visual specifications to generate queries.
The technique presented in this chapter will find applications in teaching and learning
systems. The benefits offered by the visualiser will facilitate human comprehension of SQL
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Figure 34: Hints provided to the user

Figure 35: A successfully generated query

queries. This work will particularly aid undergraduate students who are learning SQL
queries for the first time. Another application area of this work can be extended to com-
mercial business systems, where the visualiser may be used to assist non-professional users
comprehend SQL queries. While such users may be aware of databases, their knowledge
of SQL queries may be limited. We believe that our technique’s clear communication and
visualisation-focus will help users to easily understand SQL queries.
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Figure 36: The help feature presents the guidelines for the user

7.4 C H A P T E R S U M M A RY

This chapter has presented an interactive visualisation tool that used visual specifications to
build SQL queries. The visualisation tool considered the SQL SELECT constructs in a bid to
improve the comprehension process. It is generally agreed that visualisation can encourage
active participation and also lead to critical thought processes in students [Gray and Malins
2016; Lye and Koh 2014]. Hence, this work is consistent with those that have used visual
specifications. In Chapter 8, we will examine another approach that converts speech into SQL
queries.
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The preceding chapter presented the visual specification method that used the drag and
drop interaction to generate a query. This method was implemented into a tool called
the SQL Visualiser that uses images to generate a query. This chapter introduces

the verbal specification technique into a speech-based query system named TalkSQL that
takes speech inputs from a user, converts these words into SQL queries and returns a feedback
to the user. Automatic feedback generation is of immense importance. To achieve this, we
have used REs, a representation of regular languages for the recognition of SQL queries and
automatically generate feedback using pre-defined templates.

8.1 I N T R O D U C T I O N

NLP has contributed immensely to the field of HCI, in terms of its theoretical results and prac-
tical applications. These applications have led to the emergence of robust speech-enabled user
interfaces (VUIs) such as Google’s Voice Action, Apple’s Siri, Amazon’s Alexa, Microsoft’s
Cortana etc [Feng et al. 2017; Zhang et al. 2018; Saha et al. 2019]. Together, these VUIs have
been applied to solve real world problems in Healthcare [Shah and Sengupta 2018], Internet
of Things (IoT) [Jungbluth et al. 2018], Military [Levulis et al. 2018], Telecommunication [Kapur
et al. 2018], etc.

Figure 37: The framework of TalkSQL

This chapter introduces a speech-based, conversational NLIDB system called TalkSQL,
used to aid the comprehension of SQL. TalkSQL is an intelligent, conversational tutoring
system that translates natural language queries into an executable SQL query to be used
on a test database, and presents an output. Similarly, a speech feedback is provided to a
learner. TalkSQL applies the CRUD (CREATE, SELECT(READ), UPDATE and DELETE)
operations, used against a relational database.

In Figure 37, we show the architecture of TalkSQL. A user initiates a verbal request to
the tool, which is then processed and converted into text by the Google Cloud Speech API.
The text version is preprocessed by the ln2SQL server that uses the spaCy NLP engine (de-
scribed in Chapter 3) for conversion into a SQL query. The generated query is used on a
relational database to request data. Automated feedback is an important aspect of this work.
To provide a user with a feedback, the query is tokenised and grouped into syntactic parts.
The recognised parts are then matched with a feedback template, and a feedback is generated.
The feedback is presented to the user in textual, vocal and visual forms. The TalkSQL engine
is similar to that presented in ln2SQL [Couderc and Ferrero 2015] which considers only the
SELECT command.
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8.2 F E E D B A C K G E N E R AT I O N

Feedback has shown to assist novices comprehend their programs and in many cases, applied
in textual forms to provide insights [Ade-Ibijola et al. 2014; Singh et al. 2013]. As discussed in
the literature (Chapter 3), different NLIDB systems have been able to provide feedback in
different forms, but to our knowledge, none has undergone our approach. The technique we
have developed uses REs to recognise SQL queries before generating a feedback to a user. The
feedback is usually concise in a bid to assist learners understand SQL queries. Algorithm 14
shows spoken words from a user, the query equivalent is presented in Listing 14 and the
expected feedback is displayed in Algorithm 15.

Algorithm 14 Spoken words from a user (NL)
Amend the student name to John whose id is equal to 6

Listing 14: SQL query to update a single record

UPDATE Student
SET name = ’ John ’
Where ID = 6 ;

Algorithm 15 Expected Feedback
You have updated a record with a name called John, whose ID number
is equal to 6 in the Student table.

The tool described in this study takes verbal inputs from a user, performs operations on
it and generates a query. The feedback from the query generation is similar to that shown
in Algorithm 15. The next section presents REs for the recognition of the CRUD commands
syntaxes in SQL before generating a feedback to the user.

8.3 S Q L C O N S T R U C T S A B S T R A C T I O N U S I N G R E G U L A R E X P R E S S I O N S

In this section, we show how we have abstracted the CRUD SQL operations using regular
expressions. This stage is regarded as the Lexical Analysis phase. This phase shows how the
streams of characters (lexemes) that make up the language are grouped into tokens for recog-
nition. To begin, we represent the CRUD operation with a diagram that describes how the
building blocks of tokens should be formulated as seen in Figure 38. The CRUD commands

Figure 38: The diagram denoting the CRUD SQL commands

consists of four statements used to perform operations in a database. These statements are
Create, Select, Update and Delete. These statements have been described using regular
expressions in [Ade-Ibijola and Obaido 2017], as discussed in Section 4.3.
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8.4 I N T R O D U C I N G TA L K S Q L

TalkSQL was designed as a C# Windows Forms Application (WPF) that runs on the .NET
framework [MSDN 2017]. As a VUI, TalkSQL translates natural language specified in verbal
inputs into an executable SQL query to be used on a test database and presents an output.
Figure 40 shows the user interface of TalkSQL. A successful conversion will produce a result
to a user in the form of a visualisation. An automatic feedback is also available to a user
in textual and speech forms. The idea is to provide a comprehensive feedback to a learner.
Errors are also handled by TalkSQL in the form of refinements. TalkSQL informs the user to
refine their statement in a conversational manner and produces a result once the statement is
understood. The schema for the test database is provided in Figure 39.

Figure 39: The schema of the test database

The schema contains three tables (school, instructor, class) with their associated attributes.
Each table is linked by a primary key (id), which is the unique identifier. TalkSQL uses this
schema to perform the query generation. It is worth-noting that TalkSQL can be adapted to
any database. We have used this sample database to test the tool that has been developed for
this work.

8.4.1 Implementation and Results

In this section, we show how TalkSQL (Figure 40) was implemented to translate speech in-
puts into a SQL query and the feedback is presented to the learner. Next, we describe the
error-handling and how it can be refined to construct a query. Last, we present possible appli-
cations of TalkSQL.

8.4.2 Query Translation

In this section, we discuss the translation of user inputs from verbal inputs, before a query is
generated and feedback is shown to a user. TalkSQL undergoes five phases before a query
is generated as presented in Figure 22. In the first phase, words from a user are converted
into text by the Google Cloud API service for further processing. This process is known as
the speech recognition phase. The second phase takes the recognised text and match it to
sequences of tokens. At this phase, whitespaces and noisy features such as comma, etc., are
removed. This phase is known as the tokenisation phase. The third stage tags each tokenised
sentence to their respective parts-of-speech (also known as POS Tagging). For example, the
POS-tagging for the sentence will be:

Display
VB

the
DT

age
NN

from
IN

the
DT

student
NN

table
NN
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Figure 40: The User Interface of TalkSQL

In this example, NN stands for a singular noun, DT - determiner, IN - preposition and VB
stands for a verb. The fourth phase classifies each word to their syntactic parts. This phase
is regarded as the syntactic analysis phase where each word is transformed into structures
and shows relations. The fifth phase analyses the structure from the syntactic phase and
check for meanings before words are mapped to their equivalent meaning. For example,
words such as select, choose, pick and display are mapped to SELECT keyword. Words such
as create, produce, make, build are mapped to the CREATE keyword. Also words such as
update and amend are mapped to the UPDATE keyword. For the DELETE keyword, words
such as remove, delete are mapped. Once attributes and keywords are mapped, the query is
generated and used in a database.

In this section, we have presented the query translation phase as described in Figure 22.
The next section presents the result of the CRUD statement.

8.4.3 Results of the CRUD Operations

TalkSQL was successful in generating feedback for the CRUD statements. We start with the
CREATE command as seen in Algorithm 16. This shows a request from a user. The converted
SQL query is seen in Listing 15 and feedback provided in Algorithm 17.

Algorithm 16 Create command words from a user (NL)
Make a class table and specify ID as integer, name as alphanumeric entries with at most 45 characters
and section as alphanumeric characters of at most 45 characters

Listing 15: CREATE SQL query

CREATE TABLE c l a s s (
ID i n t ,
name v a r c h a r ( 4 5 ) ,
s e c t i o n v a r c h a r ( 4 5 )
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) ;

Algorithm 17 Feedback for the CREATE statement
You have created a new table called class with the following
information, ID stores integer values, name stores alphanumeric
entries that contain 45 characters, section stores alphanumeric
entries that contain 45 characters

The natural language that matches a SELECT command is presented in Algorithm 18. The
row count function, count(), is used to retrieve the number of rows in a table. We added this
function to the feedback generator to display the number of rows that appear in a table. The
converted query version is presented in Listing 16. The feedback for this query is presented
in Algorithm 19.

Algorithm 18 Spoken words from a user (NL)
Show the name and age of the student table

Listing 16: SELECT SQL query

SELECT name , age
FROM s t u d e n t ;

Algorithm 19 Feedback for the SELECT statement
There are 6 rows that contains name and ages in the student table

Algorithm 20 shows the update keyword specified in natural language spoken by the user
to update a table. The NL query is converted into SQL queries in Listing 17. The correspond-
ing feedback is presented in Algorithm 21.

Listing 17: UPDATE SQL query

UPDATE s t u d e n t
SET name = ’ John ’
Where ID = 6 ;

Algorithm 22 shows the delete keyword specified in NL, spoken by a user to delete a record
from a table. Listing 18 shows the converted SQL query. The feedback is presented in Algo-
rithm 23.

Listing 18: DELETE SQL query

DELETE FROM l e c t u r e r
Where name = ’ John ’ ;

8.4.4 Error-handling and Refinement

To handle errors, TalkSQL uses two phases to resolve any ambiguity. The first phase requests
a user to supply a missing attribute and table information, while the second phase finds miss-
ing keywords from a user statement.

8.4.4.1 Table and Attribute Ambiguity

TalkSQL handles errors that may occur in a conversational manner. If some information is
required before a query can be generated, TalkSQL notifies the user to complete the statement
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Algorithm 20 Spoken words from a user (NL)
Amend the student name to John whose id is equal to 6

Algorithm 21 Feedback for the Update statement
You have updated a record with a name called John, whose ID number
is equal to 6 in the Student table.

with the missing information using a speech-based conversation. For example, if the user says:
“Show me the names in a table". It can be seen that the name attribute appears in the three
tables as specified in the schema in Figure 39. TalkSQL uses this template to notify the user:

Do you mean the {attribute} in the Table 1 | Table 2 | ...| Table N table ?

In this case, the TalkSQL would ask the user: “Do you mean the name in Lecturer, Student
or Class table?”. Once the user clarifies the missing table. TalkSQL proceeds with generating
the SQL query and the feedback is provided to the user. Similarly, if a user makes a request
such as “Display all details from the table" for a query to be generated and does not supply a
table name, we use the template to request a user to supply the required table:

Do you mean the Table 1 | Table 2 | ...| Table N table ?

As specified in the template, the request would be: “Do you mean the Lecturer, Student
or Class table ?”. Here, TalkSQL would ask the user to complete the statement and once
provided, a query will be generated.

8.4.4.2 Keywords

In situations where the keywords such as table and attributes information are missing,
TalkSQL requests a user to provide additional information. For example, if a user requests:
“Show the information from the table”. TalkSQL uses this template to request the user to
provide additional details before generating a query:

Could you specify which {Table}, and its {Attributes} ?

Once the information required is provided by the user, TalkSQL generates the query. We
compared TalkSQL with a number of NLIDB systems as presented in Table 11.

8.4.5 Applications of TalkSQL

In this section, we present possible applications of TalkSQL that were introduced in Sec-
tion 8.4. TalkSQL may find applications in:

1. QA systems: As a tool, it may be used to provide a solution to a user’s question specified
in natural language.

2. learning aids: It may be applied to assist users understand and improve their cognition
of the SQL concepts.

3. ITSs: TalkSQL may be used to provide immediate feedback to a learner without relying
solely on an instructor. In addition, it can be used as a practice aid to assist learners
understand SQL.

4. assistive technologies: For a visually impaired learner, TalkSQLmay be used to enhance
SQL learning, since it is hands-free and provides feedback in speech forms.

Algorithm 22 Spoken words from a user (NL)
Remove a record from the lecturer table where the name is John
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Algorithm 23 Feedback for the Update statement
You have deleted 1 record from the lecturer table where the name is
John

Table 11: Existing tools versus TalkSQL

Focus Purpose SQL Commands Feedback

Target

(Novice)

Teaching

and

Learning

aid

CREATE SELECT UPDATE DELETE Speech Text Visuals

LUNAR X X 7 X 7 7 7 7 X

MaNaLa X X 7 X 7 7 7 7 X

EchoQuery X X 7 X 7 7 X 7 X

SpeakQL X X 7 X 7 7 X 7 X

Cyrus X X 7 X 7 7 X 7 X

Ln2QL X X 7 X 7 7 7 7 X

TalkSQL

(Our tool)
X X X X X X X X X

5. improving SQL comprehension: Generally, as a tool, it may be used by non-technical
end-users in industry and students in higher institutions of learning to improve their
SQL understanding.

8.5 S C O P E A N D L I M I TAT I O N S

In this section, we present the scope and limitations of TalkSQL. Up until this point, TalkSQL
can perform error-checking and provide feedback for simple CRUD operations. The tool uses
REs for the recognition of the simple CRUD operations in SQL. A noticeable feature that
TalkSQL cannot handle is generating feedback for queries in complex forms – especially
queries enclosed with balanced parentheses (See Listing 19).

Listing 19: A non-regular nested SQL query statement

SELECT f i r s t n a m e
FROM e m p l oy e e
WHERE empid IN (

SELECT DISTINCT
empid
FROM
e m p l oy e e ) ;

The example in Listing 19 contains two nested SELECT statements. The inner query within
the parentheses displays only the empid information. The outer query displays the firstname
from the employee table. These types of queries can only be recognised by a CFG – a type
of irregular language. It is interesting to note that REs are only used for lexical analysis tasks
rather than syntactic parsing. A parser generator such as Coco/R [Mössenböck 2005] will fix
this issue.

8.6 C H A P T E R S U M M A RY

In this chapter, a speech-based tool called TalkSQL was introduced, that takes speech inputs
from a user, converts these words into SQL queries, and then returns a feedback to a user.
We improved an existing NLIDB framework to accommodate the CRUD operations which
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allows a user to create, retrieve, modify and delete data from a database. TalkSQL uses REs
to recognise these SQL operations and generate a feedback to be shown to a user. TalkSQL
was able to recognise simple query commands that do not contain balanced parentheses. As
a tool, it may find applications in real-world scenarios and improve SQL learning.

Part iv contains two chapters. The first chapter, Chapter 9, contains the evaluation results
of the prototypes developed from Chapter 4 to Chapter 8. The conclusion of this thesis is
presented in Chapter 10.



Part IV

E VA L U AT I O N S , C O N C L U S I O N S A N D F U T U R E W O R K

Throughout this study, we have presented a number of algorithms together with
some software prototypes that assist end-users comprehend SQL queries. These
prototypes are (i) S-NAR, a narrator for explaining SQL queries using predefined
templates; (ii) SQL-Narrator, an improved SQL narrator for nested queries; (iii)
Narrations-2-SQL, a tool that translates a narration into SQL queries; (iv) SQL
Visualiser, a visualisation tool that uses the drag and drop interaction for query
generation; and (v) TalkSQL, a speech-based query tool, that converts speech into
SQL queries. For each prototype, we examine end-users’ perceptions and form a
basis for future studies. Many evaluations were conducted using an online means,
and where necessary, we undertook some performance evaluation.

This part consists of two chapters. In Chapter 9, we present the evaluation results
for the prototypes designed in this study and provide the conclusion with discus-
sions for future work in Chapter 10.
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9.1 I N T R O D U C T I O N

Throughout this study, we have developed a number of prototypes from Chapter 4 to
Chapter 8. These tools have contributed immensely to the problem of SQL under-
standing and synthesis. In this chapter, we present the result of the evaluation that

was conducted for each of the studies. Majority of the evaluation was conducted through an
online survey designed as questionnaires. These questionnaires were designed using Google
Forms. A link was sent to all participants at the university for their contribution. The ques-
tions used for these surveys are provided in Appendix A.

9.2 E VA L U AT I O N O F S - N A R

This section presents the accuracy of the S-NAR tool. S-NAR was tested on 5000 queries
scrapped from the Internet (indexed in Appendix E), and it successfully narrated a subset
of these queries (96%). This is presented in Equation 38.

Accuracy =
4824

5000
= 96.48% (38)

We noticed that the remaining 4% of the queries were nested queries and had balanced
parentheses in them. This could only be recognisable by a CFG or higher classes of formal
abstract machines. This was already addressed in Chapter 5.

9.3 E VA L U AT I O N O F T H E S Q L N A R R AT O R

In this section, we present the result of the evaluation carried out using an online survey from
161 students at the University of the Witwatersrand. The participants were mostly undergrad-
uate CS students at the University of the Witwatersrand whom had already been taught sim-
ple and nested queries. Participation was strictly non-mandatory and participants’ profiles
were kept anonymous. The survey is available in the link: https://goo.gl/CQcVZN.

9.3.1 Result of the Survey

Out of the 161 responses received, 97.5% claimed they are familiar with SQL queries, 1.2%
indicated no familiarity and 1.2% were unsure about their response - this is presented in
Figure 41. In addition, we asked the participants if they think nested queries are difficult and
96.3% agreed that nested queries are difficult, 8.5% claimed they do not think nested queries
are difficult, while 3.4% were unsure about their responses (see Figure 42).

A total of 98.1% agreed that they were able to comprehend nested queries using the SQL
Narrator and 1.9% claimed that they could not comprehend the nested queries using the
narrator (in Figure 43). Furthermore, we asked the participants to answer which of the gener-
ated narrations they were able to comprehend (see Figure 44). About 91.4% strongly agreed
that the outer to inner subquery narration was easier to comprehend while 1.9% chose the co-
joined subquery narration, and 6.8% agreed with the inner to outer subquery narration. It is
interesting to note that the majority of the participants agreed with the outer to inner narration
for the subquery. Perhaps, they were comfortable with the chronological flow of the explana-
tion of the subquery. In addition, we asked the participants to rate the SQL Narrator on a
scale of 1- 10; it was seen that majority agreed that the tool was useful to them (see Figure 45).
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Figure 41: Knowledge of simple queries Figure 42: Are nested queries difficult?

Figure 43: Comprehend nested queries
using the SQL Narrator

Figure 44: Comprehend which of the
generated narrations

Figure 45: Rate the SQL Narrator

9.3.2 Respondent Feedback

The last part of the questionnaire was open-ended. We asked the respondent to provide any
recommendation they might have for us to improve the tool. Some of the recommendations
provided by the participants are given in this section. With the result of the evaluation, and
the recommendation provided, we can conclude that adopting this tool will improve student
comprehension of nested queries. Some comments that were anonymously given by the par-
ticipants are as follows.

“I would not suggest anything, as the tool makes nested queries very
easy to understand.”

“This tool is easy to understand compared to other narration tools
that I have used.”



9.4 E VA L U AT I O N O F N A R R AT I O N S - 2 - S Q L 105

“It’s much nicer to see what the queries are, and explanations of
each of them were provided.”

“It was easier to read the sentences and follow it through. I am
sure the narrator will be more useful with more complicated
examples, this will benefit a novice programmer altogether.”

“Nothing to suggest. It seems to do exactly what it’s meant to and
does it really well. I liked the fact that the narrations are well

structured sentences and aren’t complicated explanations.”

9.4 E VA L U AT I O N O F N A R R AT I O N S - 2 - S Q L

The evaluation was carried out in a two-fold manner: (1) Using the crowdsourced XNorth-
wind dataset indexed in Appendix D, we show the accuracy of the Narrations-2-SQL tool.
(2) Using human subjects, we show the users’ perceptions of the tool we have designed for
this study. The survey can be accessed through https://bit.ly/2m62guw.

9.4.1 Accuracy of Narrations-2-SQL

We used the crowdsourced XNorthwind dataset to train our tool. The end-users were asked
to test Narrations-2-SQL with their narrations. We discovered that about 180 narrations
from the end-users were able to successfully match an SQL query. To determine the accuracy,
we take:

Accuracy =
180

204
= 88% (39)

It is worth noting that the decrease in the accuracy was due to some of the narrations being
outside are out of our JFA training data. In future work, we will improve our JFA to recognise
more queries by adding more keywords and semantic rules.

9.4.2 Survey Design

The survey was carried out through an online means and feedback was received from 162
participants. The results of the survey in this section and was strictly anonymous. The survey
can be accessed via https://shorturl.at/aJMN8.

9.4.2.1 Result of the Survey

A total of 162 responses were received, and 88.9% agreed that they were familiar with SQL,
8.0% admitted no familiarity of SQL and 3.1% were unsure (see Figure 46). In addition, the
participants were asked if they thought Narrations-2-SQL is user-friendly; 98.8% agreed
that the tool was user-friendly and 1.2% were unsure about their responses (see Figure 47).
They were also asked if they thought the generated SQL query was a correct translation of
their narrations; about 93.8% admitted yes and 6.2% were unsure about their responses (see
Figure 48).

When the users were asked if the tool will help end-users in industry with no knowledge
of SQL, 96.9% of them agreed that the tool will be helpful to industry users and 3.1% were
unsure (in Figure 49). In addition, we asked the participants to rate the tool that we have
developed on a scale of 1-10. The result is presented in Figure 50.
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Figure 46: Familiar with SQL
Figure 47: The user friendliness of Narrations-2-

SQL

Figure 48: The generated SQL query a
correct translation of narrations

Figure 49: The tool will help end-users in
industry with no knowledge of SQL

Figure 50: Rate the Narrations-2-SQL

9.4.2.2 Respondent Feedback

In this section, we capture participants’ comments about the Narrations-2-SQL. Open-
ended questions were asked to get participants to get their insights about what they thought
of Narrations-2-SQL. It was worth noting that the feedback provided was interesting and
would enable us improve Narrations-2-SQL for future research. Some comments from the
participants are as follows.

“This is a very helpful tool and will improve a lot of successful my
SQL code creation skills.”

“Great to use and very simple. It will be easy for people that do
not even know much about SQL”
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“I think this tool will help eliminate a lot of errors in SQL
coding”

“I would honestly recommend this tool to anyone who intends to
queries in SQL”

“I have two observations: Could you include voice prompt so that it
will be easier to use, and could you increase the font size of the

query result.”

With these results, we conclude that automating narrations into SQL will be beneficial for
end-users.

9.5 E VA L U AT I O N O F S Q L V I S U A L I S E R

The evaluation of the SQL Visualiser was carried out using an online survey from 121 stu-
dents from the University of the Witwatersrand. The respondents were mostly undergraduate
CS students and majority of them had knowledge of SQL. The questionnaire is split into two
parts: the first required the students to answer general questions about their knowledge of
visualisers, while the second focused on their perception of the SQL Visualiser we have
designed in this research. In addition, the students were asked to provide feedback on ways to
improve the SQL Visualiser. Constructive feedback was received. The survey is available
in the link: https://bit.ly/2m1Pf4Y.

9.5.1 Result of the Survey

Out of the 121 responses, 89.3% admitted to have knowledge of SQL, 7.4% affirmed no knowl-
edge of SQL and 3.3% were unsure about their responses – this is presented in Figure 51. Of
the participants, 94.2% agreed that the SQL Visualiser was user-friendly, 4.1% admitted
that the visualiser was not user-friendly, and 1.7% were unsure about their responses (see
Figure 52).

Furthermore, the students were asked if they were able to synthesise basic SQL queries
using the visualiser (in Figure 53). About 95% agreed that the visualiser helped them compre-
hend SQL queries, 4% admitted that they find the visualiser difficult to use and 1% stayed
indifferent. In addition, 92.6% admitted that visual specifications helped them understand
the syntax of the SQL queries, 5% did not agree and 2.4% stayed indifferent (see Figure 54).
We asked the participants to rate the SQL Visualiser; their responses are captured in Fig-
ure 55.

Figure 51: Knowledge of SQL
Figure 52: The user friendliness of the SQL Visu-

aliser
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Figure 53: Ability to synthesise basic
SQL queries using the visualiser

Figure 54: Visual specifications helped
comprehend SQL

Figure 55: Rate the SQL Visualiser

9.5.2 Respondent Feedback

The feedback the respondents made was helpful and some respondents highlighted some
limitations of the SQL Visualiser. Examples of the positive comments made were:

“The visualiser was extremely helpful. I liked the way the pictures
assisted in displaying the query. As a learner, I think it will help

other students understand SQL queries better and improve our
knowledge of the SQL concept.”

“Icons were a good idea and helpful. It is not boring.”

“Far much better visualiser l have used so far.”

“It seems simple and straight-forward, the user does not have to try
hard to understand its functionality and operation.”

Some of the limitations mentioned by the respondents include:

“There should be explanations, the use of comments in the query text
box would be extremely useful. I have used SQL before, therefore
this is mostly targeted at novice users. Other methods should be

integrated to cater for expert users.”

“The icons colour choice is boring.”
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“Possibly increase text sizing for the visually impaired user.”

“This tool should allow users to choose their own icons (e.g.
students could be a different icon).”

The majority of the students commended the use of visual specifications to aid their compre-
hension. These results are consistent with the evaluation carried out on a visualiser [Satya-
narayan and Heer 2014] for program comprehension, where users perceptions supported the
usefulness and importance of visual specifications. We believe that adopting this tool in higher
institutions of learning will improve students’ comprehension of SQL.

9.6 E VA L U AT I O N O F TA L K S Q L

The survey was carried out online and the feedback was received from 113 partici-
pants. The majority of the participants were undergraduate CS students taking a database
course and most of them were familiar with SQL. The survey can be accessed through
https://bit.ly/2ktYNVX. The result of the survey is presented in the next section.

9.6.1 Result of the Survey

We received a total of 113 responses, out of which 98.2% agreed that they had knowledge of
SQL, 0.9% were unsure and 0.9% indicated no knowledge of SQL – this is shown in Figure 56.
Furthermore, we asked the participants if the TalkSQL tool was easy to use; 98.7% claimed
that the tool was easy to use and 5.3% were not sure of their responses (see Figure 57). About
91.2% claimed that they were able to understand the CRUD commands, 8% were indifferent
and 0.9% claimed they could not understand the CRUD operation using TalkSQL (see Fig-
ure 58). Next, we asked the participants if they think a visually impaired learner could under-
stand SQL with TalkSQL, a total of 87.6% agreed, 10.6% were unsure and 1.8% do not agree
that this category of learners would understand SQL query using TalkSQL (in Figure 59). We
asked the participants to rate TalkSQL, their responses are indicated in Figure 60.

Figure 56: Knowledge of SQL Figure 57: Ease of use of TalkSQL

9.6.1.1 Respondent Feedback

Open-ended questions were asked from the participants to indicate what we could do to
improve TalkSQL. The feedback received was quite helpful, while some highlighted a couple
of limitations. Some positive feedback received are as follows:

“It is really nice and very helpful. It will help learners who are
colour-blinded to learn SQL.”

“I liked the part where a voice feedback was read back to me, no
need to type!.”
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Figure 58: Able to understand CRUD operations
using TalkSQL

Figure 59: Able to assist the visually impaired
understand SQL

Figure 60: Rate the TalkSQL tool

“Very interesting tool! I could rephrase my words over again.
Nice!.”

“No suggestions. TalkSQL works perfectly.”

Some limitations mentioned were:

“Please, increase the font size!”

“What if my voice is strained, I think you should add typing
features.”

“This tool should cater for nested SQL queries as well.”

Indeed, the feedback received will help us improve TalkSQL and make it accessible for learn-
ers that require its services. These results are consistent with the survey by Wilson [Wilson
et al. 2010] where the participants agreed that verbal specifications can assist learners under-
stand SQL. We are very positive that adopting this tool will stimulate students’ interest of
SQL in higher institutions of learning.

9.7 C H A P T E R S U M M A RY

This chapter presented the evaluation of the prototypes that were designed in this research.
In the first prototype, we measured the accuracy and presented some results. Next, we
conducted online surveys for the remainder of the prototypes, as seen from Section 9.3 to
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Section 9.6. Overall, the feedback received on each survey indicated that the participants
agreed that the tools stimulated their interests in the SQL concepts.

Chapter 10 concludes this research and provides ideas for future research.
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10.1 C O N C L U S I O N

Learning and writing correct SQL queries have shown to be significant problems in the
academic environment as well as in industry. These problems have a seemingly un-
ending impact on students and non-technical end-users alike. Even when there are

highly skilled instructors, who are experts in the field, their solutions may not address the
issue adequately. In most universities, a class may be large and an instructor might be less
responsive to every student’s needs. Similarly, this may occur in the industry whereby a de-
veloper who is saddled with all the technical intricacies of a company may leave the organisa-
tion, leaving the less-skilled user to scramble for solutions to their query needs. Consequently,
such users might opt for online forums as a last resort, which may offer little or no help to
their immediate query needs. Therefore, the overall problem is two-fold:

1. A student may be willing to learn SQL, which is paramount to passing a course and it
is of equal importance when it comes to employability, but lacks sufficient knowledge
to do so.

2. A non-technical end-user may have an urgent need to write queries as part of a routine
task, but lacks the skill.

This thesis presented SQL Comprehension and Synthesis to address the aforementioned
challenges. Additionally, it suggests interactive learning aids in an attempt to assist these
choices of users to enable them to understand and write correct queries. Since the ultimate
goal of learning aids is to enhance the teaching and learning process, this research is aimed at
the improvement, and the comprehension process utilised by interactive aids. Ultimately, as
stated in this research, interactive aids aim to improve the understanding of SQL queries, an
area that students and non-technical end-users often struggle to comprehend. If implemented
on a large-scale, the tools may be applied in numerous applications in real world scenarios
and to improve SQL learning. The following prototypes have been presented in this thesis:

S - N A R . Chapter 4 introduced S-NAR, a tool that used REs in its engine to recognise SQL
queries for the purpose of improving SQL comprehension. The tool translated the recog-
nised SQL queries into textual explanations called narrations. This information is pre-
sented to a learner in real-time. In addition, the tool could serve as a learning aid by
students or non-technical end-users that require explanations to queries written by tech-
nical staff. Similarly, the tool could be used to support teaching in line with the SFA to
programming language pedagogy [Fincher 1999; Ade-Ibijola et al. 2014]. Another major
advantage seen through the use of S-NAR is that it provides immediate feedback about
the correctness of a query. S-NAR was tested with 5000 queries scrapped from the Inter-
net, and it successfully reported an accuracy of 96%, which was a major success. In its
current formation, the tool is unable to recognise nested queries enclosed in balanced
parentheses. However, this may only be addressed by using an irregular language such
as CFGs or higher classes of formal abstract machines, as presented in Chapter 5. S-NAR
has appeared in Ade-Ibijola and Obaido [2017].

S Q L N A R R AT O R . In Chapter 5, a CFG was designed for the automatic generation of nar-
rations for nested SQL queries. This was implemented using Coco/R, a compiler gen-
erator that takes an attributed grammar and generates a scanner and a parser. These
generated elements, both the scanner and the parser, were used to verify the correct-
ness of a nested query. The designed grammar was implemented into a tool called SQL
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Narrator based on the C# language. This further runs on the .Net framework. SQL
Narrator was tested with the remaining 4% of queries that could not recognised by
S-NAR in the previous study in Chapter 4. The tool successfully translated these queries.
This idea has appeared in Obaido et al. [2019a]. The idea of using a CFG in this study
was extended to the synthesis of 100000 hypothetical datasets that are similar to the
Northwind database. The resulting database was referred to as XNorthwind (Extended
Northwind) and has appeared in an extended study in Ade-Ibijola and Obaido [2019].
This database was used to train the tool, discussed in Chapter 6.

N A R R AT I O N S - 2 - S Q L . Chapter 6 proposed an approach that uses a JFA – a type of Finite
Machine for translating natural language descriptions into SQL queries, which then fur-
ther executes the queries, as well as provides feedback to a user. This technique was
implemented into a tool called Narrations-2-SQL. This idea has appeared in Obaido
et al. [2019b] An experimental evaluation was performed on 204 crowdsourced queries
in natural language from the XNorthwind DB. The result thereof reported an accuracy
of 88%. This report revealed that there is room for improvement. To our knowledge,
this is expected to be the first time in which such an approach would be applied for SQL
query translation from natural language. Since a natural language is context-sensitive,
the JFA approach has shown to be an effective technique to the problem of query transla-
tion from natural language. If implemented on a large scale, Narrations-2-SQL may
assist end-users in different domains to specify queries in natural language and perform
tasks seamlessly without requiring much help from technical users.

S Q L V I S U A L I S E R . Chapter 7 presented an approach which made use of images that de-
pict SQL commands to generate a query. This was designed into a tool called the
SQL Visualiser. The visualisation technique ensured the interaction between vi-
sual specifications to build queries. This is expected to eliminate the need to memorise
database schemas, which is a major problem faced by students while learning SQL. SQL
Visualiser used visual specifications for ‘drag and drop’ interactions for generating
SQL queries. So far, the tool is only able to generate queries within the SELECT com-
mand. An extended visualiser is anticipated to recognise more commands to support
the JOIN, ORDER BY, GROUP BY and aggregate functions. SQL Visualiser has ap-
peared in Obaido et al. [2018].

TA L K S Q L . In Chapter 8, a speech-based query system called TalkSQLwas designed to assist
end-users to specify queries using speech inputs. TalkSQL has appeared in Obaido et al.
[2019c]. This tool relied on an existing framework which makes use of the spaCy NLP
engine to recognise SQL commands. For speech translation, TalkSQL uses the Google
Speech API that incorporates a Deep Neural Network, alongside the HMM to transcribe
speech. This speech engine was chosen due to its WER of 9% which outperformed other
automatic speech recognition engines as discussed in Section 3.7.3.4. For query explana-
tion, TalkSQL uses the narration technique that automatically generates using regular
expressions as described in Chapter 4. Currently, the tool is unable to provide expla-
nations for queries in nested forms. We anticipate a narrator engine developed using
Coco/R in Chapter 5, which could be used to fix this hitch.

Finally, an evaluation of the prototypes was provided in Chapter 9. During the first study,
only an experimental evaluation was performed to determine the accuracy of the tool. This
showed an accuracy of 96%. The second study reported that out of 161 participants, 98.1%
agreed that the tool enabled them understand nested queries. In the third study, an accuracy
of 88% was reported as experimental evaluation and 96.9% out of 162 participants agreed
that the tool would be helpful to industry users. The fourth study showed that out of 121
responses, 92.16% indicated that the tool aided their understanding of the SQL syntax. In the
fifth study, out of 113 responses, 87.6% acknowledged that the tool would certainly help visu-
ally impaired learners to correctly write queries using voice inputs. The next section presents
discussions for future directions.
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10.2 F U T U R E W O R K

The prototypes developed in this thesis provide a basis for future research in several areas. At
least five such areas can be identified. These areas include:

1. Extending narrations to other query forms.

2. Improving the SQL Visualiser to accommodate other SELECT statements such as
JOIN, ORDER BY and other aggregate functions.

3. Extending the Narrations-2-SQL tool to work with multiple different databases.

4. Developing a practical quiz engine for SQL quiz grading.

The following sections elaborate the areas that have been highlighted in more detail.

10.2.1 Extending Narrations

This work has used narrations for aiding the comprehension of SQL queries. An area of explo-
ration might be to abstract these explanations into a form that is free from language keywords.
For example, we have used ‘alphanumeric’ to represent datatypes. It may be worth noting that
some end-users may not clearly understand what the term ‘alphanumeric’ means. One way
of capturing such a detail might be to use terms such as: ‘letters and numbers’. These terms
are well-defined in an end-user’s vocabulary. Another interesting area of application of narra-
tions to might be to explain queries that appear in other forms such as XML, SPARQL, JSON,
etc. These will promote a clearer understanding of these queries.

10.2.2 Improving the Visualiser

The developed tool was able to easily generate simple queries using images. The next plan
of action is to extend the visualiser to support other SELECT operation statements such as
JOIN, ORDER BY, GROUP BY and aggregate functions. It will be interesting to see how
learners could use these images to generate queries that contain these kinds of statements.
Another desirable application of the visualiser is to generate nested SQL queries. These types
of queries have shown to be problematic for students. Such solutions will help users to learn
nested queries using such a visualiser. Other areas of exploration are to allow students to
define their schema. This will provide a richer learning experience for the more advanced
learner. It will be interesting to see how the extended visualiser can be made to generate
queries to manipulate data in a database, and then produce a result. This will promote a more
‘realistic’ use of the tool. We have seen that the Narrations-2-SQL and TalkSQL use this
approach on a live database and produce an output, which students find very useful.

10.2.3 Extending the Narration-2-SQL Tool

We have used the Narrations-2-SQL tool to work with the XNorthwind DB, which shows
a good accuracy. It will be worthwhile to investigate the tool to work with multiple different
databases such as Geo880, Academic, British National Corpus and IMDB to determine its
accuracy. This may be an interesting problem to investigate. Recent studies by Baik et al. [2019];
Cai et al. [2017]; Yaghmazadeh et al. [2017a] have tested their approaches on multiple different
databases. It will be interesting to compare our results with these studies. Additionally, it
will be beneficial to use the JFA technique to other domains that require natural language
specifications to generate code. For example, JFA can be applied to map query stored in JSON,
XML, SPARQL and NoSQL formats.
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10.2.4 Developing a Quiz Game

REs are useful for pattern matching and have been demonstrated in this research. It will be
worth investigating this approach for a game-based scenario for learning SQL. Such an appli-
cation may be useful to test learners’ query skills.



Part V

A P P E N D I X

This appendix contains materials that are supplementary to contents that have
been discussed in this thesis. This part has been organised as follows: the ques-
tionnaires used for the survey design are presented in Appendix A, Appendix B
contains the REs library written in the Microsoft .NET framework, the atg file
used for the grammar design by the Coco/R parser generator is presented in
Appendix C, the crowdsourced natural language descriptions dataset used to
train the Narrations-2-SQL is highlighted in Appendix D and the 5000 queries
tested by S-NAR is provided in Appendix E.





AQ U E S T I O N N A I R E S

This appendix contains the questionnaires that were used in this study.

119



9/21/2019 Generating Narrations from SQL Queries using Context-Free Grammars

https://docs.google.com/forms/d/1Ywuryf3jOzKpM7EOQoit_muJYaTAG6nwkkZQjsUUSxg/edit 1/3

Generating Narrations from SQL Queries using
Context-Free Grammars
Narrations provide explanations of a concept in a domain. For example, a program narrator explains 
details about lines of code. In this study, narrations are described as a textual explanation of a query.  
We have developed a tool called SQL Narrator that generates narrations for nested SQL queries. This 
section contains general questions about SQL queries. The next section presents specific questions on 
the SQL Narrator.

* Required

1. Have you used a narrator before? *
Mark only one oval.

 Yes

 No

 Maybe

2. What was the narrator's task?
 

 

 

 

 

3. How would you rate the narrator on a scale from 1 to 10 (1 for not at all useful and 10 for
very useful) *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Not at all
useful

Very
useful

4. Are you familiar with simple SQL queries? *
Mark only one oval.

 Yes

 No

 Maybe
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5. Are nested queries too difficult? *
Mark only one oval.

 Yes

 No

 Maybe

6. Have you used a SQL-based Narrator before? *
Mark only one oval.

 Yes

 No

 Maybe

7. Would you be interested in using a SQL-based narrator? *
Mark only one oval.

 Yes

 No

 Maybe

SQL Narrator
Specific questions on the SQL Narrator tool. SQL Narrator generates narrations from nested SQL queries. 
Answer the following questions.

The SQL Narrator tool generates narrations from a nested SQL
query
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Pow ered by

8. Was the SQL Narrator easy to use? *
Mark only one oval.

 Yes

 No

 Maybe

9. Were you able to comprehend the nested queries using SQL Narrator? *
Mark only one oval.

 Yes

 No

 Maybe

10. Out of the three narrations generated, which one were you able to comprehend? *
Mark only one oval.

 Inner to Outer Subquery Narration

 Outer to Inner Subquery Narration

 Co-joined Subquery Narration

11. How would you rate the narrator on a scale of 1 to 10 (1 for not at all useful and 10 for very
useful)? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Less
useful

Very
useful

12. Any suggestions/comments to improve the SQL Narrator to aid your cognitive process?
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Synthesis of SQL Queries from Narrations
In this study, narrations are translated into SQL Queries.  We have developed a tool that translates a 
natural language specification into SQL queries called narration-2-SQL. This section contains general 
questions on SQL queries. The next section presents specific questions about the narrations-2-SQL 
tool.

* Required

1. Are you familiar with SQL? *
Mark only one oval.

 Yes

 No

 Maybe

2. Rate your familiarity with SQL on a scale of 1 to 10? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Not at all
familiar

Very
familiar

3. Are you familiar with the CREATE, SELECT, UPDATE and DELETE operations? *
Mark only one oval.

 Yes

 No

 Maybe

4. Do you know of any tool that helps you to transform a natural language specification into
SQL query before? *
Mark only one oval.

 Yes

 No

 Maybe

5. If yes, what is the name of such a tool?

Narrations-2-SQL tool
Specific questions on the Narrators to SQL tool. This tool translates a natural language specification into 
SQL. Answer the following questions.



9/21/2019 Synthesis of SQL Queries from Narrations

https://docs.google.com/forms/d/1xVL0RjiXfKp1k0cEFfL7k5owKMGLyVUNP97hK3g9Ljw/edit 2/3

6. Was Narration-2-SQL easy to use? *
Mark only one oval.

 Yes

 No

 Maybe

7. Was the generated SQL query a correct translation of your narration? *
Mark only one oval.

 Yes

 No

 Maybe

8. Do you think this tool will assist end users in the industry who has no knowledge of SQL to
work with SQL? *
Mark only one oval.

 Yes

 No

 Maybe

The tool translates natural language specifications into SQL
queries
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9. How would you rate Narration-2-SQL (1 for not at all useful and 10 for very useful)? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Less
useful

Very
useful

10. Any suggestions to improve Narration-2-SQL to aid your understanding?
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Generating SQL Queries from Visual Specifications
This study proposes the use of interactive visualisation technique to aid the understanding of SQL.  We 
have developed a tool that uses images that depicts SQL operation to generate SQL queries. This 
section contains general questions about the use of visualisers. The next section presents specific 
questions about the SQL visualiser that was developed for this study.

* Required

1. Have you used a visualiser before? *
Mark only one oval.

 Yes

 No

 Maybe

2. What was the visualiser task? *
 

 

 

 

 

3. How would you rate the visualiser on a scale from 1 to 10 *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Not at all
useful

Very
useful

4. Are you familiar with SQL *
Mark only one oval.

 Yes

 No

 Maybe

5. Rate your familiarity with SQL *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Less
familiar

Very
familiar
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6. Have you used a SQL-based visualiser *
Mark only one oval.

 Yes

 No

 Maybe

SQL Visualiser
Specific questions on SQL Visualiser. The SQL visualiser uses the drag and drop method to generate 
SQL queries.

The SQL Visualiser, generating a correct successful query

The SQL visualiser generating a wrong query
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7. Is the visualiser easy to use? *
Mark only one oval.

 Yes

 No

 Maybe

8. Were you able to synthesize the basic SQL queries? *
Mark only one oval.

 Yes

 No

 Maybe

9. Do icons help you analyse the syntax of SQL queries *
Mark only one oval.

 Yes

 No

 Maybe

10. How would you rate the visualiser on a scale of 1 to 10? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Less
useful

Very
useful
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11. Any suggestions/comments to improve the visualiser to aid your cognitive process? *
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Synthesis of SQL Queries from Verbal Specifications
In this study, a speech to SQL method was proposed.  We have developed a tool called TalkSQL, that 
takes voice inputs from a user, converts these words into SQL queries and returns feedback to the user. 
This section contains general questions on users' familiarity with SQL and voice-based NLIDBs. The 
next section presents specific questions about the TalkSQL tool.

* Required

1. Are you familiar with simple SQL queries? *
Mark only one oval.

 Yes

 No

 Maybe

2. Are you familiar with the CRUD (Create, Read, Update, Delete) operations? *
Mark only one oval.

 Yes

 No

 Maybe

3. Have you used a voice-based natural language interface to databases (NLIDB) before? *
Mark only one oval.

 Yes

 No

 Maybe

4. Would you be interested in a voice-based NLIDB? *
Mark only one oval.

 Yes

 No

 Maybe

TalkSQL
TalkSQL takes voice inputs from a user, convert these words into SQL queries and returns feedback to a 
user

The TalkSQL tool takes voice inputs from a user and generates
a query.
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5. Was TalkSQL easy to use? *
Mark only one oval.

 Yes

 No

 Maybe

6. Were you able to understand the CRUD command using TalkSQL? *
Mark only one oval.

 Yes

 No

 Maybe

7. Do you think this might help visually impaired learners understand SQL? *
Mark only one oval.

 Yes

 No

 Maybe

8. Was the feedback you received comprehensive? *
Mark only one oval.

 Yes

 No

 Maybe
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9. How would you rate TalkSQL (1 for not at all useful and 10 for very useful)? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Less
useful

Very
useful

10. Any suggestions to improve TalkSQL to aid your understanding?
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This section contains the REs library that have been specified in the .NET framework, written
in VB.NET. This was used to recognise simple SQL query constructs as seen in Listing 20.

Listing 20: REs defined in .NET for SQL query constructs

1 ’for all letters including hyphens
2 letter As String = "([A-Za-z-])"
3 s_spc As String = "(\s)"
4 n_spc As String = "(\s+)"
5 spc As String = "(\s*)"
6 all As String = "(\*)"
7 comma As String = "(\,)"
8 bra_open As String = "(\()"
9 bra_close As String = "(\))"

10 ass_sym As String = "(\=)"
11 greater_than As String = "(\>)"
12 less_than As String = "(\<)"
13 not_equal_to As String = "(\!\=)"
14 less_than_equal As String = "(\<\=)"
15 greater_than_equal As String = "(\>\=)"
16 not_greater_than As String = "(\!\>)"
17 not_less_than As String = "(\!\<)"
18 or_greater_or_less As String = "(\<\>)"
19 ident As String = "([A-Za-z_][A-Za-z0-9_]+)"
20 number As String = "[1-9][0-9]*"
21 semi_colon As String = "(\;)"
22 float_number As String = "(\d\d?\.\d\d?)"
23

24 val_in_quote As String = "((\’)" & "(" & _ident & "|" & _number & "|" & _float_number & "|"
& _n_spc & "|" & _comma & ")+" & "(\’))"

25

26 list_of_vals_in_quote As String = "(" & "(" & _val_in_quote & _spc & _comma & _spc & ")*(" &
_val_in_quote & "))"

27

28 ident_sep_by_comma As String = "(" & "(" & _ident & _spc & _comma & _spc & ")*(" & _ident &
"))"

29

30 list_of_values_sep_by_comma As String = _bra_open & _spc & _list_of_vals_in_quote & _spc &
_bra_close

31

32 comp_op As String = "(" & _ass_sym & "|" & _greater_than & "|" & _less_than & "|" &
_not_equal_to & "|" & _less_than_equal & "|" & _greater_than_equal & "|" &
_not_less_than & "|" & _or_greater_or_less & ")"

33

34

35 ’----------------- SQL (INSERT) ----------------------------
36 insert_suffix_into As String = _ident & _spc & _bra_open & _ident_sep_by_comma & _bra_close
37 insert_suffix_end As String = _bra_open & _list_of_values_sep_by_comma & _bra_close
38 insert_command As String = "(INSERT)" & _n_spc & "(INTO)" & _n_spc & _insert_suffix_into &

_spc & "(VALUES)" & _spc & _insert_suffix_end & _semi_colon
39

40

41 ’----------------- SQL (CREATE_TABLE) ----------------------------
42 create_suffix_into As String = _ident & _spc & _bra_open & _spc & _ident_sep_by_comma & _spc

& _bra_close
43 create_command As String = "(CREATE)" & _n_spc & "(TABLE)" & _n_spc & _create_suffix_into &

_semi_colon
44

45 ’----------------- SQL (CREATE_DB) ---------------------------------------
46 create_database As String = "(CREATE)" & _n_spc & "(DATABASE)" & _n_spc & ("IF") & _n_spc &

("NOT") & _n_spc & ("EXISTS") & _n_spc & _ident & _semi_colon
47

48

49 ’----------------- SQL (DROP) ----------------------------
50 drop_suffix_into As String = _ident_sep_by_comma
51 drop_command As String = "(DROP)" & _n_spc & "(DATABASE)" & _n_spc & "(IF)" & _spc & "(

EXISTS)" & _spc & _drop_suffix_into & _semi_colon
52 drop_command_table As String = "(DROP)" & _n_spc & "(TABLE)" & _n_spc & "(IF)" & _spc & "(

EXISTS)" & _spc & _drop_suffix_into & _semi_colon
53

54
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55 ’----------------- SQL (RENAME) ----------------------------
56 rename_suffix_into As String = _ident & _n_spc & "(TO)" & _n_spc & _ident
57 rename_command As String = "(RENAME)" & _n_spc & "(TABLE)" & _n_spc & _rename_suffix_into &

_semi_colon
58

59 ’----------------- SQL (TRUNCATE) ----------------------------
60 truncate_suffix_into As String = _ident
61 truncate_command As String = "(TRUNCATE)" & _n_spc & "(TABLE)" & _n_spc &

_truncate_suffix_into & _semi_colon
62

63 ’----------------- SQL (ALTER) ----------------------------
64 alter_suffix_into As String = _ident & _n_spc & "(RENAME)" & _n_spc & "(TO)" & _n_spc &

_ident
65 alter_command As String = "(ALTER)" & _n_spc & "(TABLE)" & _n_spc & _alter_suffix_into &

_semi_colon
66

67 ’----------------- SQL (DELETE) ----------------------------
68 delete_suffix_into As String = _ident & _n_spc & "(WHERE)" & _n_spc & _ident & _comp_op &

_val_in_quote
69 delete_command As String = "(DELETE)" & _n_spc & "(FROM)" & _n_spc & _delete_suffix_into &

_semi_colon
70

71 ’----------------- SQL (SELECT) ----------------------------
72 select_suffix_all As String = _all
73 select_suffix_one_or_more As String = "(" & _ident_sep_by_comma & "|" & "(\*)" & ")+"
74 select_numb_or_string_in_quote As String = "(" & "((\’)" & _ident & "(\’))" & "|" & _number

& ")+"
75 select_command_all As String = "(SELECT)" & _n_spc & _select_suffix_all & _n_spc & "(FROM)"

& _n_spc & _ident & _semi_colon
76 select_command_all_more As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &

_n_spc & "(FROM)" & _n_spc & _ident & _semi_colon
77 select_command_distinct As String = "(SELECT)" & _n_spc & "(DISTINCT)" & _n_spc &

_select_suffix_one_or_more & _n_spc & "(FROM)" & _n_spc & _ident & _semi_colon
78 select_command_where As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more & _n_spc &

"(FROM)" & _n_spc & _ident & _n_spc & "(WHERE)" & _n_spc & _select_suffix_one_or_more
& _comp_op & _select_numb_or_string_in_quote & _semi_colon

79 select_command_where_and As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &
_n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(WHERE)" & _n_spc &
_select_suffix_one_or_more & _comp_op & _select_numb_or_string_in_quote & _n_spc & "(
AND)" & _n_spc & _select_suffix_one_or_more & _comp_op &
_select_numb_or_string_in_quote & _semi_colon

80 select_command_where_or As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &
_n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(WHERE)" & _n_spc &
_select_suffix_one_or_more & _comp_op & _select_numb_or_string_in_quote & _n_spc & "(OR
)" & _n_spc & _select_suffix_one_or_more & _comp_op & _select_numb_or_string_in_quote &
_semi_colon

81 select_command_where_not As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &
_n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(WHERE)" & _n_spc & "(NOT)" & _n_spc &
_select_suffix_one_or_more & _comp_op & _select_numb_or_string_in_quote & _semi_colon

82 select_command_where_in As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &
_n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(WHERE)" & _n_spc & _ident & _n_spc & "
(IN)" & _n_spc & _list_of_values_sep_by_comma & _semi_colon

83 select_command_where_between As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &
_n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(WHERE)" & _n_spc & _ident & _n_spc & "
(BETWEEN)" & _n_spc & _select_numb_or_string_in_quote & _n_spc & "(AND)" & _n_spc &
_select_numb_or_string_in_quote & _semi_colon

84 select_command_where_like As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &
_n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(WHERE)" & _n_spc & _ident & _n_spc & "
(LIKE)" & _n_spc & _select_numb_or_string_in_quote & _semi_colon

85 select_command_where_groupby As String = "(SELECT)" & _n_spc & _select_suffix_one_or_more &
_n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(GROUP BY)" & _n_spc & _ident &
_semi_colon

86 select_command_where_orderby_asc As String = "(SELECT)" & _n_spc &
_select_suffix_one_or_more & _n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(ORDER BY)
" & _n_spc & _ident & _n_spc & "(ASC)" & _semi_colon

87 select_command_where_orderby_desc As String = "(SELECT)" & _n_spc &
_select_suffix_one_or_more & _n_spc & "(FROM)" & _n_spc & _ident & _n_spc & "(ORDER BY)
" & _n_spc & _ident & _n_spc & "(DESC)" & _semi_colon

88 select_command_count As String = "(SELECT)" & _n_spc & "(COUNT)" & _bra_open & _ident &
_bra_close & _n_spc & "(FROM)" & _n_spc & _ident & _semi_colon
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The following contains the attributed grammar (atg) of the SQL source language used by
Coco/R to generate a scanner and parser for the language. This ideas were taken from the
EBNF grammar defined by Ron Savage [Savage 2017]. Listing 21 shows the atg file used by
the Coco/R engine.

Listing 21: Attributed grammar design using Coco/R

1 COMPILER SqlGrammar
2 public Narrator narrator;
3

4 CHARACTERS
5 letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_".
6 digit = "0123456789".
7

8 TOKENS
9 ident = letter { letter | digit | ’_’ }.

10 number = digit { digit }.
11 semi_colon = ’;’.
12

13 IGNORE ’\r’ + ’\n’ + ’\t’
14

15 PRODUCTIONS
16

17 SqlGrammar
(. narrator = new Narrator(); .)

18 =
19 TruncateCommand | DeleteCommand | SelectCommand .
20

21 TruncateCommand
22 =

(. string tableName; .)
23 "TRUNCATE" "TABLE" StringVal<out tableName> semi_colon (. narrator.NarrateTruncate(

tableName); .).
24

25 DeleteCommand
(. ArrayList list = null; .)

26 =
27 "DELETE" { "*" | StringList<out list > } "FROM" StringVal<out string tableName> semi_colon
28 (. narrator.NarrateDelete(tableName, list); .).
29

30

31 SelectCommand
(. bool nested = false;

32 bool noConditions = false;
33 string comparisonOp = null;
34 string conditionColumn = null;
35 object criteriaValue = null;
36 string logicalOp = null;
37 ArrayList innerOptions = new ArrayList();
38 string innerTableName = null;
39 string innerConditionValue = null;
40 string innerComparisonOp = null; .)
41 =
42 "SELECT" StringList<out ArrayList options> "FROM" StringVal<out string tableName>
43 (. noConditions = true; .)
44 [
45 "WHERE" StringVal<out conditionColumn>
46 (
47 LogicalOp<out logicalOp>
48 "("
49 "SELECT" StringList<out innerOptions> "FROM" StringVal<out innerTableName>
50 "WHERE" StringVal<out innerConditionValue> ComparisonOp<out innerComparisonOp> AnyValue<out

criteriaValue>
51 ")"

(. nested = true; noConditions = false;.)
52

53 |
54

55 ComparisonOp<out comparisonOp> AnyValue<out criteriaValue>
56 (. noConditions = false; .)
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57 )
58 ] semi_colon

(. narrator.NarrateSelect(
59 nested,
60 noConditions,
61 options,
62 tableName,
63 comparisonOp,
64 conditionColumn,
65 innerOptions,
66 innerTableName,
67 innerConditionValue,
68 innerComparisonOp,
69 criteriaValue); .).
70

71

72 StringVal<out String s>
73 =

(. s = null; .)
74 ident

(. s = t.val; .).
75

76 StringList<out ArrayList list >
77 =
78 StringVal< out string s> (.

list = new ArrayList{s}; .)
79 {"," StringVal< out s> (.

list.Add(s); .)
80 }.
81

82 LogicalOp<out string op> (.
op = null; .)

83 =
84 "AND"

(. op = t.val; .)
85 |
86 "OR"

(. op = t.val; .)
87 |
88 "IN"

(. op = t.val; .)
89 |
90 "NOT"

(. op = t.val; .)
91 |
92 "SOME"

(. op = t.val; .)
93 |
94 "ALL"

(. op = t.val; .).
95

96 ComparisonOp<out string op> (.
op = null; .)

97 =
98 "="

(. op = "equal to"; .)
99 |

100 ">"
(. op = "greater than"; .)

101 |
102 "<"

(. op = "less than"; .)
103 |
104 ">="

(. op = "igreater than or equal to"; .)
105 |
106 "<="

(. op = "less than or equal to"; .)
107 |
108 "<>"

(. op = "not "; .).
109

110

111 AnyValue<out object value> (.
value = null; .)

112 =
113 ident

(. value = "’" + t.val + "’"; .)
114 |
115 number

(. value = t.val; .).



C F G R U L E S 137

116

117

118

119

120 //quote = "’" .
121 //string_num = quote | number.
122 //ident_list = ident {"," ident}.
123 //logicalop = "AND" | "OR" | "IN" | "NOT" | "SOME" | "ALL".
124 END SqlGrammar.
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This following shows the JSON file that contains 204 translations of natural language de-
scriptions into SQL queries (as shown in Listing 22). This dataset was used to train the
narrations-2-SQL tool as discussed in Chapter 6. This is broken into Item, denoting
the numbering, Narrations described as natural language descriptions, and the equivalent
SQL queries. We have only presented 20 items here, the complete list can be accessed via:
http://tiny.cc/fe2oiz.

Listing 22: JSON file containing natural language descriptions of SQL queries

1 [
2 {
3 "Item": 1,
4 "Narrations": "Please, show me all the information from the

customers table.",
5 "SQL Queries": "SELECT * FROM Customers;"
6 },
7 {
8 "Item": 2,
9 "Narrations": "Retrieve all the order details information",

10 "SQL Queries": "SELECT * FROM order_details;"
11 },
12 {
13 "Item": 3,
14 "Narrations": "Display the orders information",
15 "SQL Queries": "SELECT * FROM orders;"
16 },
17 {
18 "Item": 4,
19 "Narrations": "Display all the products details",
20 "SQL Queries": "SELECT * FROM products;"
21 },
22 {
23 "Item": 5,
24 "Narrations": "Display all employee records",
25 "SQL Queries": "SELECT * FROM employee;"
26 },
27 {
28 "Item": 6,
29 "Narrations": "Display all the categories information",
30 "SQL Queries": "SELECT * FROM Categories;"
31 },
32 {
33 "Item": 7,
34 "Narrations": "Please can you show me all the shippers details

from the table",
35 "SQL Queries": "SELECT * FROM shippers;"
36 },
37 {
38 "Item": 8,
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39 "Narrations": "I need you to select all the suppliers data",
40 "SQL Queries": "SELECT * FROM suppliers;"
41 },
42 {
43 "Item": 9,
44 "Narrations": "Show all the employee cities.",
45 "SQL Queries": "SELECT cities FROM employees;"
46 },
47 {
48 "Item": 10,
49 "Narrations": "Show me only the employee countries.",
50 "SQL Queries": "SELECT country FROM employees;"
51 },
52 {
53 "Item": 11,
54 "Narrations": "Show all the employeeID.",
55 "SQL Queries": "SELECT employeeID FROM employees;"
56 },
57 {
58 "Item": 12,
59 "Narrations": "Select all ids from the customer table.",
60 "SQL Queries": "SELECT * FROM Customerdemographics;"
61 },
62 {
63 "Item": 13,
64 "Narrations": "List all customers from South Africa or USA",
65 "SQL Queries": "SELECT Id, FirstName, LastName, City, Country

FROM Customers WHERE Country = ’South Africa’ OR Country =
’USA’;"

66 },
67 {
68 "Item": 14,
69 "Narrations": "select the Customer Name and company Name",
70 "SQL Queries": "SELECT ContactName, CompanyName FROM Customers

;"
71 },
72 {
73 "Item": 15,
74 "Narrations": "select all columns from customer table where

the Country column has South Africa for its value",
75 "SQL Queries": "SELECT * FROM Customers WHERE Country=’South

Africa’;"
76 },
77 {
78 "Item": 16,
79 "Narrations": "return only the Customer contact name and phone

number where country is equal to South Africa",
80 "SQL Queries": "SELECT phone, ContactName FROM Customers WHERE

Country=’Sout-Africa’;"
81 },
82 {
83 "Item": 17,
84 "Narrations": "select the First name and title from customers",
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85 "SQL Queries": "SELECT ContactName, ContactTitle FROM Customers
;"

86 },
87 {
88 "Item": 18,
89 "Narrations": "List the first name, Phone, and city of all

customers",
90 "SQL Queries": "SELECT ContactName, phone, city FROM Customers

;"
91 },
92 {
93 "Item": 19,
94 "Narrations": "List the order id, order date and shipped date

for all orders.",
95 "SQL Queries": "SELECT orderID, orderDate and shippedDate FROM

orders;"
96 },
97 {
98 "Item": 20,
99 "Narrations": "List the customers in Sweden",

100 "SQL Queries": "SELECT * FROM Customer WHERE Country = ’Sweden
’;"

101 }
102 ]
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The following contains SQL queries scrapped from the Internet. In total, 5000 queries were
scrapped from the Internet. We have only showed 44 queries here. The entire file can be
accessed via http://tiny.cc/qs1adz. Listing 23 shows some of queries scrapped from
Internet.

Listing 23: Dataset of SQL queries scrapped from the Internet

1 INSERT INTO Student (SELECT * FROM LateralStudent);
2 INSERT INTO Student (ROLL_NO,NAME,Age) SELECT ROLL_NO, NAME,

Age FROM LateralStudent;
3 INSERT INTO Student SELECT * FROM LateralStudent WHERE Age =

18;
4 INSERT INTO categories(category_id, category_name)VALUES(150, '

Miscellaneous');
5 INSERT INTO customers(customer_id, last_name, first_name)SELECT

employee_number AS customer_id, last_name, first_name FROM
employees WHERE employee_number < 1003;

6 SELECT name(s)FROM student WHERE name = 'peter' AND name = 'doe
';

7 SELECT name AS 'Alias' FROM student;
8 SELECT AVG(name)FROM student;
9 SELECT name(s)FROM student WHERE name BETWEEN 'peter' AND 'doe'

;
10 SELECT name,CASE WHEN condition THEN 'Result_1'WHEN condition

THEN 'Result_2'ELSE 'Result_3'END FROM student;
11 SELECT COUNT(name)FROM student;
12 SELECT B.FirstName AS FirstName1, B.LastName AS LastName1, A.

FirstName AS FirstName2, A.LastName AS LastName2, B.City, B
.Country FROM Customer A, Customer B WHERE A.Id <> B.Id AND
A.City = B.City AND A.Country = B.Country ORDER BY A.

Country;
13 SELECT column-names FROM table-name UNION SELECT column-names

FROM table-name;
14 SELECT 'Customer' As Type,FirstName + ' ' + LastName AS

ContactName,City, Country, Phone FROM Customer UNION SELECT
'Supplier', ContactName, City, Country, Phone FROM

Supplier;
15 SELECT column-names FROM table-name1 WHERE value IN (SELECT

column-name FROM table-name2 WHERE condition);
16 SELECT column1 = (SELECT column-name FROM table-name WHERE

condition),column-names FROM table-name WEHRE condition;
17 SELECT ProductName FROM Product WHERE Id IN (SELECT ProductId

FROM OrderItem WHERE Quantity > 100);
18 SELECT FirstName, LastName, OrderCount = (SELECT COUNT(O.Id)

FROM [Order] O WHERE O.CustomerId = C.Id) FROM Customer C ;
19 SELECT column-names FROM table-name WHERE column-name operator

ANY (SELECT column-name FROM table-name WHERE condition);
20 SELECT column-names FROM table-name WHERE column-name operator

ALL(SELECT column-name FROM table-name WHERE condition);
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21 SELECT ProductName FROM Product WHERE Id = ANY(SELECT ProductId
FROM OrderItem WHERE Quantity = 1);

22 SELECT DISTINCT FirstName + ' ' + LastName as CustomerName FROM
Customer, [Order]WHERE Customer.Id = [Order].CustomerId

AND TotalAmount > ALL (SELECT AVG(TotalAmount)FROM [Order]
GROUP BY CustomerId);

23 SELECT column-names FROM table-name WHERE EXISTS (SELECT column
-name FROM table-name WHERE condition);

24 SELECT CompanyName FROM Supplier WHERE EXISTS(SELECT
ProductName FROM Product WHERE SupplierId = Supplier.Id AND
UnitPrice > 100) ;

25 SELECT column-names INTO new-table-name FROM table-name WHERE
EXISTS(SELECT column-name FROM table-name WHERE condition);

26 SELECT * INTO SupplierUSA FROM Supplier WHERE Country = 'USA';
27 INSERT INTO table-name (column-names)SELECT column-names FROM

table-name WHERE condition;
28 INSERT INTO Customer (FirstName, LastName, City, Country, Phone

)SELECT LEFT(ContactName, CHARINDEX(' ',ContactName) - 1)
AS FirstName,SUBSTRING(ContactName, CHARINDEX(' ',
ContactName) + 1, 100) AS LastName,City, Country, Phone
FROM Supplier WHERE Country = 'Canada';

29 SELECT column_list FROM table-name [WHERE Clause][GROUP BY
clause][HAVING clause][ORDER BY clause];

30 SELECT first_name FROM student_details;
31 SELECT first_name, last_name FROM student_details;;
32 SELECT first_name + ' ' + last_name AS emp_name FROM employee;
33 SELECT * FROM EMPLOYEE_TBL;
34 SELECT EMP_ID FROM EMPLOYEE_TBL;
35 SELECT EMP_ID FROM EMPLOYEE_TBL;
36 SELECT EMP_ID, LAST_NAME FROM EMPLOYEE_TBL;
37 SELECT EMP_ID, LAST_NAME FROM EMPLOYEE_TBL WHERE EMP_ID = '

333333333';
38 SELECT EMP_ID, LAST_NAME FROM EMPLOYEE_TBL WHERE CITY = '

INDIANAPOLIS' ORDER BY EMP_ID;
39 SELECT EMP_ID, LAST_NAME FROM EMPLOYEE_TBL WHERE CITY = '

INDIANAPOLIS' ORDER BY EMP_ID, LAST_NAME DESC;
40 SELECT EMP_ID, LAST_NAME FROM EMPLOYEE_TBL WHERE CITY = '

INDIANAPOLIS' ORDER BY 1;
41 INSERT INTO CUSTOMER(CustomerName,ContactName, Address, City,

PostalCode, Country)('Cardinal','Tom B','Erichsen','Sagen
21','Stavanger','4006','Norway');

42 INSERT INTO CATEGORIES(Category_id, Category_Name)(150,'
Miscellaneous');

43 INSERT INTO PRODUCT (ProductID, ProductName, Price,
ProductDescription)(1,'Clamp',12.48,'Workbench clamp');

44 INSERT INTO CUSTOMER(FirstName,LastName,PhoneNumber,
EmailAddress,priority,CreatedDate)('Jonah','Hook','
0114022558','Jonahneverdull.com’,1,’2011-09-01’);
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Internet banking adoption: A unified theory of acceptance and use of technology and
perceived risk application. International Journal of Information Management, 34(1):1–13,
2014.

[Mason et al. 2016] Raina Mason, Carolyn Seton, and Graham Cooper. Applying cognitive
load theory to the redesign of a conventional database systems course. Computer Science
Education, 26(1):68–87, 2016.

[Maubert and Pinchinat 2013] Bastien Maubert and Sophie Pinchinat. Jumping automata for
uniform strategies. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2013). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2013.

[Mayer and Alexander 2016] Richard E Mayer and Patricia A Alexander. Handbook of research
on learning and instruction. Taylor & Francis, 2016.

[Mayer 2009] Richard E Mayer. Constructivism as a theory of learning versus constructivism
as a prescription for instruction. Constructivist instruction: Success or failure, pages 184–
200, 2009.

[McCann et al. 2016] James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech
Matusik, Jennifer Mankoff, and Jessica Hodgins. A compiler for 3D machine knitting.
ACM Transactions on Graphics, 35(4):49, 2016.



Bibliography 173

[McDougle et al. 2016] Samuel D McDougle, Richard B Ivry, and Jordan A Taylor. Taking aim
at the cognitive side of learning in sensorimotor adaptation tasks. Trends in cognitive
sciences, 20(7):535–544, 2016.

[McGill 2008] Monica McGill. Critical skills for game developers: an analysis of skills sought
by industry. In Proceedings of the 2008 conference on future play: Research, play, share, pages
89–96. ACM, 2008.

[McLeod 2003] Gregory McLeod. Learning theory and instructional design. Learning Matters,
2(3):35–43, 2003.

[McTear 2002] Michael F McTear. Spoken dialogue technology: enabling the conversational
user interface. ACM Computing Surveys (CSUR), 34(1):90–169, 2002.

[Mealin and Murphy-Hill 2012] Sean Mealin and Emerson Murphy-Hill. An exploratory
study of blind software developers. In 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 71–74. IEEE, 2012.

[Meduna and Soukup 2017] Alexander Meduna and Ondřej Soukup. Modern Language Mod-
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